Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_6_a6, author = {Oleg Yu. Vorobyev}, title = {Postulating the theory of experience and chance}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {705--717}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a6/} }
TY - JOUR AU - Oleg Yu. Vorobyev TI - Postulating the theory of experience and chance JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 705 EP - 717 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a6/ LA - en ID - JSFU_2019_12_6_a6 ER -
Oleg Yu. Vorobyev. Postulating the theory of experience and chance. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 705-717. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a6/
[1] P.A.M. Dirac, “A new notation for quantum mechanics”, Proceedings of the Cambridge Philosophical Society, 35 (1939), 416–418 | DOI | MR
[2] P.A.M. Dirac, The principles of quantum mechanics, Yeshiva University, New York, 1964 | MR
[3] D. Dubois, H. Prade, “Possibility theory, probability theory and multiple-valued logics: A clarification”, Annals of Mathematics and Artificial Intelligence, 32 (2001), 35–66 | DOI | MR | Zbl
[4] G. Shafer, A mathematical theory of evidence, Princeton University Press, Princeton, NJ, 1976 | MR | Zbl
[5] O. Yu.Vorobyev, Eventology, Siberian Federal University Press, Krasnoyarsk, Russia, 2007
[6] O. Yu.Vorobyev, “Contemporary uncertainty theories: An eventological view”, Proc. of the VIII Intern. FAM Conf. on Financial and Actuarial Mathematics and Related Fields, v. 1, SFU, Krasnoyarsk, 2009, 26–34
[7] O. Yu. Vorobyev, “Eventology versus contemporary theories of uncertainty”, Proc. of the XII Intern. EM conference on eventological mathematics and related fields, SFU, Krasnoyarsk, 2009, 13–27
[8] O. Yu. Vorobyev, “An element-set-labelling a Cartesian product by measurable binary relations which leads to postulates of the theory of experience and chance as a theory of co$\sim$events”, Proc. of the XV Intern. FAMEMS Conf. on Financial and Actuarial Mathematics and Eventology of Multivariate Statistics $\$ the Workshop on Hilbert's Sixth Problem, SFU, Krasnoyarsk, 2016, 9–24
[9] O. Yu. Vorobyev, “Postulating the theory of experience and chance as a theory of co$\sim$events (co$\sim$beings)”, Proc. of the XV Intern. FAMEMS Conf. on Financial and Actuarial Mathematics and Eventology of Multivariate Statistics the Workshop on Hilbert's Sixth Problem, SFU, Krasnoyarsk, 2016, 25–43, arXiv: 1801.07147
[10] O. Yu. Vorobyev, “Theory of dual co$\sim$event-based means”, Proc. of the XV Intern. FAMEMS Conf. on Financial and Actuarial Mathematics and Eventology of Multivariate Statistics $\$ the Workshop on Hilbert's Sixth Problem, SFU, Krasnoyarsk, 2016, 44–93
[11] L.A. Zadeh, “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl
[12] L.A. Zadeh, A note on similarity-based definitions of possibility and probability, Information Sciences, 267 (2014), 334–336 | DOI | MR | Zbl
[13] H.-J. Zimmermann, Fuzzy set theory and its applications, Kluwer Academic Publishers, Dordrecht, Netherlands, 2001 | MR