Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_6_a2, author = {Nyurgun P. Lazarev and Vladimir V. Everstov and Natalya A. Romanova}, title = {Fictitious domain method for equilibrium problems of the {Kirchhoff--Love} plates with nonpenetration conditions for known configurations of plate edges}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {674--686}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a2/} }
TY - JOUR AU - Nyurgun P. Lazarev AU - Vladimir V. Everstov AU - Natalya A. Romanova TI - Fictitious domain method for equilibrium problems of the Kirchhoff--Love plates with nonpenetration conditions for known configurations of plate edges JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 674 EP - 686 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a2/ LA - en ID - JSFU_2019_12_6_a2 ER -
%0 Journal Article %A Nyurgun P. Lazarev %A Vladimir V. Everstov %A Natalya A. Romanova %T Fictitious domain method for equilibrium problems of the Kirchhoff--Love plates with nonpenetration conditions for known configurations of plate edges %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 674-686 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a2/ %G en %F JSFU_2019_12_6_a2
Nyurgun P. Lazarev; Vladimir V. Everstov; Natalya A. Romanova. Fictitious domain method for equilibrium problems of the Kirchhoff--Love plates with nonpenetration conditions for known configurations of plate edges. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 674-686. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a2/
[1] V.D. Stepanov, A.M. Khludnev, “The Method of fictitious domains in the signorini problem”, Siberian Math. J., 44:6 (2003), 1061–1074 | DOI | MR | Zbl
[2] G.V. Alekseev, A.M. Khludnev, “Crack in an elastic body crossing the external boundary at zero angle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 15–29 | Zbl
[3] K.-H. Hoffmann, A.M. Khludnev, “Fictitious domain method for the Signorini problem in a linear elasticity”, Adv. Math. Sci. Appl., 14 (2004), 465–481 | MR | Zbl
[4] A.M. Khludnev, Elasticity problems in nonsmooth domains, Fizmatlit, M., 2010 (in Russian)
[5] L.-E. Andersson, A.M. Khludnev, “On crack crossing an external boundary. Fictitious domain method and invariant integrals”, Sib. J. Industr. Math., 11:3 (2008), 15–29 | MR | Zbl
[6] N.A. Nikolaeva, “Method of fictitious areas in a task about balance of a plate of Kirchhoff-Lyava”, J. Math. Sci., 221:6 (2017), 872–882 | DOI | MR
[7] N.P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, J. Math. Sci., 203:4 (2014), 527–539 | DOI | MR
[8] N.P. Lazarev, H. Itou, N.V. Neustroeva, “Fictitious domain method for an equilibrium problem of the Timoshenko-type plate with a crack crossing the external boundary at zero angle”, Jpn. J. Ind. Appl. Math., 33:1 (2016), 63–80 | DOI | MR | Zbl
[9] I.V. Frankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Industr. Math., 10:3 (2016), 333–340 | DOI | MR
[10] M. Fabre, J. Pousin, Y. Renard, “A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method”, SMAI J. Comput. Math., 2 (2016), 19–50 | DOI | MR | Zbl
[11] A.M. Khludnev, V.A. Kovtunenko, Analysis of cracks in solids, WIT-Press, Southampton, 2000
[12] N.V. Neustroeva, “A rigid inclusion in the contact problem for elastic plates”, J. Appl. Indust. Math., 4:4 (2010), 526–538 | DOI | MR
[13] N.P. Lazarev, T.S. Popova, G.A. Rogerson, “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Z. Angew. Math. Phys., 69:53 (2018) | MR | Zbl
[14] E.M. Rudoy, V.V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Siberian Electronic Mathematical Reports, 13:1 (2016), 395–410 | MR | Zbl
[15] N.A. Kazarinov, E.M. Rudoy, V.Y. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Computational Mathematics and Mathematical Physics, 58:5 (2018), 761–774 | DOI | MR | Zbl
[16] A. Khludnev, T. Popova, “Semirigid inclusions in elastic bodies: Mechanical interplay and optimal control”, Computers and Mathematics with Applications, 77:1 (2019), 253–262 | DOI | MR
[17] A.M. Khludnev, T.S. Popova, “On the mechanical interplay between Timoshenko and semirigid inclusions embedded in elastic bodies”, Z. Angew. Math. Mech., 97:11 (2017), 1406–1417 | MR
[18] A.M. Khludnev, V.V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler-Bernoulli inclusions”, Math. Mech. Solids., 22:11, 2180–2195 (2017) | DOI | MR
[19] A.M. Khludnev, V.V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Applied Mathematics Letters, 79:1 (2018), 80–84 | DOI | MR
[20] N.P. Lazarev, E.M. Rudoy, “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR
[21] E.M. Rudoy, “Domain decomposition method for a model crack problem with a possible contact of crack edges”, Computational Mathematics and Mathematical Physics, 55:2 (2015), 305–316 | DOI | MR | Zbl
[22] E.V. Pyatkina, “On control problem for two-layers elastic body with a crack”, J. Math. Sci., 230:1 (2018), 159–166 | DOI | MR
[23] A.I. Furtsev, “Differentiation of energy functional with respect to delamination's length in problem of contact between plate and beam”, Siberian Electronic Mathematical Reports, 15 (2018), 935–949 | MR | Zbl
[24] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Well-posedness of the problem of non-penetrating cracks in elastic bodies whose material moduli depend on the mean normal stress”, International Journal of Engineering Science, 136 (2019), 17–25 | DOI | MR | Zbl
[25] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Nonlinear elasticity with limiting small strain for cracks subject to non-penetration”, Mathematics and Mechanics of Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl
[26] P.N. Vabishchevich, The Method of Fictitious Domains in Problems of Mathematical Physics, Moscow State Univ. Press, M., 1991 (in Russian) | MR | Zbl
[27] J.N. Reddy, Theory and analysis of elastic plates and shells, 2nd edn., CRC Press/Taylor and Francis, Boca Raton, 2007
[28] C. Baiocchi, A. Capelo, Variational and quasivariational inequalities. Applications to free boundary problems, Wiley, Chichester, 1984 | MR | Zbl