Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_6_a1, author = {Yusup Kh. Eshkabilov and Shohruh D. Nodirov}, title = {Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and {Gibbs} measures}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {663--673}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/} }
TY - JOUR AU - Yusup Kh. Eshkabilov AU - Shohruh D. Nodirov TI - Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 663 EP - 673 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/ LA - en ID - JSFU_2019_12_6_a1 ER -
%0 Journal Article %A Yusup Kh. Eshkabilov %A Shohruh D. Nodirov %T Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 663-673 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/ %G en %F JSFU_2019_12_6_a1
Yusup Kh. Eshkabilov; Shohruh D. Nodirov. Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 663-673. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/
[1] H.O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, 2nd edn., Walter de Gruyter, Berlin, 2011 | MR
[2] U.A. Rozikov, Gibbs mesaures on Cayley tree, World Scientific, 2013 | MR
[3] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Prob., 3 (1975), 387–398 | DOI | MR | Zbl
[4] Y.M. Suhov, U.A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46 (2004), 197–212 | DOI | MR | Zbl
[5] S. Zachary, “Countable state space Markov random fields and Markov chains on trees”, Ann. Prob., 11 (1983), 894–903 | DOI | MR | Zbl
[6] P.M. Bleher, N.N. Ganikhodjaev, “On pure phases of the Ising model on the Bethe lattice”, Theor. Probab. Appl., 35 (1990), 216–227 | DOI | MR
[7] P.M. Bleher, J. Ruiz, Z.V. Agrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, Journ. Statist. Phys., 79 (1995), 473–482 | DOI | MR | Zbl
[8] N.N. Ganikhodjaev, “On pure phases of the ferromagnet Potts with three states on the Bethe lattice of order two”, Theor. Math. Phys., 85 (1990), 163–175 | MR
[9] N.N. Ganikhodjaev, U.A. Rozikov, “Description of periodic extreme Gibbs measures of some lattice model on the Cayley tree”, Theor. and Math. Phys., 111 (1997), 480–486 | DOI | MR
[10] N.N. Ganikhodjaev, U.A. Rozikov, “The Potts model with countable set of spin values on a Cayley Tree”, Letters Math. Phys., 75 (2006), 99–109 | DOI | MR | Zbl
[11] N.N. Ganikhodjaev, U.A. Rozikov, “On Ising model with four competing interactions on Cayley tree”, Math. Phys. Anal. Geom., 12 (2009), 141–156 | DOI | MR | Zbl
[12] C. Preston, Gibbs states on countable sets, Cambridge University Press, London, 1974 | MR | Zbl
[13] U.A. Rozikov, “Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions”, Theor. and Math. Phys., 112 (1997), 929–933 | DOI | MR | Zbl
[14] B. Jahnel, K. Christof, G. Botirov, “Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree”, Math. Phys. Anal. Geom., 17 (2014), 323–331 | DOI | MR | Zbl
[15] Yu.Kh. Eshkabilov, F.H. Haydarov, U.A. Rozikov, “Non-uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree”, J. Stat. Phys., 147 (2012), 779–794 | DOI | MR | Zbl
[16] E.Yu. Khshkabilov, F.H. Haydarov, U.A. Rozikov, “Uniqueness of Gibbs Measure for Models With Uncountable Set of Spin Values on a Cayley Tree”, Math. Phys. Anal. Geom., 16 (2013), 1–17 | DOI | MR
[17] Yu.Kh. Eshkabilov, U.A. Rozikov, G.I. Botirov, “Phase Transitions for a Model with Uncountable Set of Spin Values on a Cayley Tree”, Lobachevskii Journal of Mathematics, 34:3 (2013), 256–263 | DOI | MR | Zbl
[18] U.A. Rozikov, Yu.Kh. Eshkabilov, “On models with uncountable set of spin values on a Cayley tree: Integral equations”, Math. Phys. Anal. Geom., 13 (2010), 275–286 | DOI | MR | Zbl
[19] U.A. Rozikov, F.H. Haydarov, “Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree”, I.D.A.Q.P., 18 (2015), 1–22 | MR | Zbl
[20] Yu.Kh. Eshkabilov, Sh.D. Nodirov, F.H. Haydarov, “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943 | DOI | MR | Zbl
[21] Ya.G. Sinai, Theory of phase transitions: Rigorous Results, Pergamon, Oxford, 1982 | MR | Zbl
[22] V.V. Prasolov, Polynomials, Algorithms and Computation in Mathematics, 11, 2000 | MR
[23] R.W.D. Nickalls, “Vieta, Descartes and the cubic equation”, Mathematical Gazette, 90 (2006), 203–208 | DOI