Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 663-673
Voir la notice de l'article provenant de la source Math-Net.Ru
One model with nearest neighbour interactions of spins with values from the set $[0,1]$ on the Cayley tree of order three is considered in the paper. Translation-invariant Gibbs measures for the model are studied. Results are proved by using properties of the positive fixed points of a cubic operator in the cone $\mathbb{R}_+^{2}$.
Keywords:
Cayley tree, Gibbs measure, translation-invariant Gibbs measure, fixed point, cubic operator, Hammerstein's integral operator.
@article{JSFU_2019_12_6_a1,
author = {Yusup Kh. Eshkabilov and Shohruh D. Nodirov},
title = {Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and {Gibbs} measures},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {663--673},
publisher = {mathdoc},
volume = {12},
number = {6},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/}
}
TY - JOUR
AU - Yusup Kh. Eshkabilov
AU - Shohruh D. Nodirov
TI - Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2019
SP - 663
EP - 673
VL - 12
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/
LA - en
ID - JSFU_2019_12_6_a1
ER -
%0 Journal Article
%A Yusup Kh. Eshkabilov
%A Shohruh D. Nodirov
%T Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 663-673
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/
%G en
%F JSFU_2019_12_6_a1
Yusup Kh. Eshkabilov; Shohruh D. Nodirov. Positive fixed points of cubic operators on $\mathbb{R}^{2}$ and Gibbs measures. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 663-673. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a1/