Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 579-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

The impact of potential applied to the conductive surface of nanoporous membrane on the membrane potential at zero current is investigated theoretically on the basis of two–dimensional Space–charge model. The membrane separates two reservoirs with different salt concentrations. It is shown that the variation of applied potential from negative to positive values results in the continuous change of membrane selectivity from cation to anion. For equal ion diffusion coefficients, the dependence of membrane potential on the applied potential is an odd function, while for different ion diffusion coefficients it is shifted along the applied potential axis due to contribution of diffusion potential enhanced by the induced charge effect. The decrease of pore radius results in the increase of ionic selectivity and steep transition between cation–selective and anion–selective states when the applied potential is changing.
Keywords: nanoporous membrane, electric double layer, electrolyte transport, membrane potential, Space–charge model.
@article{JSFU_2019_12_5_a5,
     author = {Ilya I. Ryzhkov and Anton S. Vyatkin and Maria I. Medvedeva},
     title = {Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {579--589},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/}
}
TY  - JOUR
AU  - Ilya I. Ryzhkov
AU  - Anton S. Vyatkin
AU  - Maria I. Medvedeva
TI  - Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 579
EP  - 589
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/
LA  - en
ID  - JSFU_2019_12_5_a5
ER  - 
%0 Journal Article
%A Ilya I. Ryzhkov
%A Anton S. Vyatkin
%A Maria I. Medvedeva
%T Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 579-589
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/
%G en
%F JSFU_2019_12_5_a5
Ilya I. Ryzhkov; Anton S. Vyatkin; Maria I. Medvedeva. Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 579-589. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/

[1] H. Strathmann, Ion-exchange membrane separation processes, Elsevier, Amsterdam, 2004

[2] A. Figoli, J. Hoinkis, S. A. Altinkaya, J. Bundschuh, Application of nanotechnology in membranes for water treatment, CRC Press, 2017

[3] F. G. Bănică, Chemical sensors and biosensors: fundamentals and applications, John Wiley Sons, Chichester, UK, 2012

[4] M. Tagliazucchi, I. Szleifer, Transport mechanisms in nanopores and nanochannels: can we mimic nature?, Mater. Today, 18:3 (2015), 131–142 | DOI

[5] Z. S. Siwy, S. Howorka, “Engineered voltage-responsive nanopores”, Chem. Soc. Rev., 39 (2010), 1115–1132 | DOI

[6] X. Hou, W. Guo, L. Jiang, “Biomimetic smart nanopores and nanochannels”, Chem. Soc. Rev., 40 (2011), 2385–2401 | DOI

[7] M. Nishizawa, V. P. Menon, C. R. Martin, “Metal nanotubule membranes with electrochemically switchable ion-transport selectivity”, Science, 268 (1995), 700–702 | DOI

[8] C. R. Martin, M. Nishizawa, K. Jirage, M. Kang, S. B. Lee, “Controlling ion-transport selectivity in gold nanotubule membranes”, Adv. Mater., 13 (2001), 1351–1362 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[9] M. S. Kang, C. R. Martin, “Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method”, Langmuir, 17 (2001), 2753–2759 | DOI

[10] W. Guan, M. A. Reed, “Electric field modulation of the membrane potential in solid-state ion channels”, Nano Lett., 12 (2012), 6441–6447 | DOI

[11] W. Guan, R. Fan, M. A. Reed, “Field-effect reconfigurable nanofluidic ionic diodes”, Nat. Commun., 2 (2011), 506 | DOI | Zbl

[12] P. Gao, C. R. Martin, “Voltage charging enhances ionic conductivity in gold nanotube membranes”, ACS Nano, 8 (2014), 8266–8272 | DOI

[13] Q. Wang, C.S. Cha, J. Lu, L. Zhuang, “Ionic conductivity of pure water in charged porous matrix”, Chem. Phys. Chem., 13 (2012), 514–519 | DOI

[14] D.V. Lebedev, A.V. Shiverskiy, M.M. Simunin, V.S. Solodovnichenko, V.A. Parfenov, V.V. Bykanova, S.V. Khartov, I.I. Ryzhkov, “Preparation and ionic selectivity of carbon–coated alumina nanofiber membranes”, Petrol. Chem., 57:4 (2017), 306–317 | DOI

[15] V.S. Solodovnichenko, D.V. Lebedev, V.V. Bykanova, A.V. Shiverskiy, M.M. Simunin, V.A. Parfenov, I.I. Ryzhkov, “Carbon coated alumina nanofiber membranes for selective ion transport”, Adv. Engineer. Mater., 20 (2017), 1700244 | DOI

[16] D.V. Lebedev, V.S. Solodovnichenko, M.M. Simunin, I.I. Ryzhkov, “Effect of electric field on ion transport on nanoporous membranes with conductive surface”, Petrol. Chem., 58:6 (2018), 474–481 | DOI

[17] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Shiverskiy, M.M. Simunin, “Induced-charge enhancement of the diffusion potential in membranes with polarizable nanopores”, Phys. Rev. Lett., 119 (2017), 226001 | DOI

[18] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Minakov, M.M. Simunin, “On the origin of membrane potential in membranes with polarizable nanopores”, J. Membr. Sci., 549 (2018), 616–630 | DOI

[19] I.I. Ryzhkov, A.S. Vyatkin, A.V. Minakov, “Theoretical study of electrolyte diffusion through polarizable nanopores”, J. Siber. Fed. Univer.: Math. Phys., 11:4 (2018), 494–504 | DOI

[20] M.Z. Bazant, T.M. Squires, “Induced–charge electrokinetic phenomena”, Curr. Op. Coll. Inter. Sci., 15 (2010), 203–213 | DOI

[21] S. Rubin, M.E. Suss, P.M. Biesheuvel, M. Bercovici, “Induced–charge capacitive deionization: the electrokinetic response of a porous particle to an external electric field”, Phys. Rev. Lett., 117 (2016), 234502 | DOI

[22] C. Amatore, A.I. Oleinick, I. Svir, “Theory of ion transport in electrochemically switchable nanoporous metallized membranes”, Chem. Phys. Chem., 10 (2009), 211–221 | DOI

[23] P. Ramírez, S. Mafé, A. Alcaraz, J. Cervera, “Modeling of pH–switchable ion transport and selectivity in nanopore membranes with fixed charges”, J. Phys. Chem. B, 107 (2003), 13178–13187 | DOI

[24] R.B. Schoch, J. Han, P. Renaud, “Transport phenomena in nanofluidics”, Rev. Modern Phys., 80 (2008), 839–883 | DOI

[25] R. Qiao, N.R. Aluru, “Ion concentrations and velocity profiles in nanochannel electroosmotic flows”, J. Chem. Phys., 118 (2003), 4692–4701 | DOI

[26] V.E. Zalizniak, O.A. Zolotov, I.I. Ryzhkov, “Effective molecular dynamics model of ionic solutions for large–scale calculations”, J. Appl. Mech. Tech. Phys., 59 (2018), 41–51 | DOI | MR

[27] K.L. Yang, S. Yiacoumi, C. Tsouris, “Monte Carlo simulations of electrical double–layer formation in nanopores”, J. Chem. Phys., 117 (2002), 8499–8507 | DOI

[28] H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, J.L. Barrat, “Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels”, J. Chem. Phys., 140 (2014), 214701 | DOI | MR

[29] D. Duong–Hong, J.S. Wang, G.R. Liu, Y.Z. Chen, J. Han, N.G. Hadjiconstantinou, “Dissipative particle dynamics simulations of electroosmotic flow in nano–fluidic devices”, Microfluid Nanofluid, 4 (2008), 219–225 | DOI

[30] R.J. Gross, J.F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI

[31] P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI

[32] S. Levine, J.R. Marriott, G. Neale, N. Epstein, “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta–potentials”, J. Coll. Inter. Sci., 52:1 (1975), 136–149 | DOI