Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_5_a5, author = {Ilya I. Ryzhkov and Anton S. Vyatkin and Maria I. Medvedeva}, title = {Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {579--589}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/} }
TY - JOUR AU - Ilya I. Ryzhkov AU - Anton S. Vyatkin AU - Maria I. Medvedeva TI - Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 579 EP - 589 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/ LA - en ID - JSFU_2019_12_5_a5 ER -
%0 Journal Article %A Ilya I. Ryzhkov %A Anton S. Vyatkin %A Maria I. Medvedeva %T Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 579-589 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/ %G en %F JSFU_2019_12_5_a5
Ilya I. Ryzhkov; Anton S. Vyatkin; Maria I. Medvedeva. Modelling of electrochemically switchable ion transport in nanoporous membranes with conductive surface. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 579-589. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a5/
[1] H. Strathmann, Ion-exchange membrane separation processes, Elsevier, Amsterdam, 2004
[2] A. Figoli, J. Hoinkis, S. A. Altinkaya, J. Bundschuh, Application of nanotechnology in membranes for water treatment, CRC Press, 2017
[3] F. G. Bănică, Chemical sensors and biosensors: fundamentals and applications, John Wiley Sons, Chichester, UK, 2012
[4] M. Tagliazucchi, I. Szleifer, Transport mechanisms in nanopores and nanochannels: can we mimic nature?, Mater. Today, 18:3 (2015), 131–142 | DOI
[5] Z. S. Siwy, S. Howorka, “Engineered voltage-responsive nanopores”, Chem. Soc. Rev., 39 (2010), 1115–1132 | DOI
[6] X. Hou, W. Guo, L. Jiang, “Biomimetic smart nanopores and nanochannels”, Chem. Soc. Rev., 40 (2011), 2385–2401 | DOI
[7] M. Nishizawa, V. P. Menon, C. R. Martin, “Metal nanotubule membranes with electrochemically switchable ion-transport selectivity”, Science, 268 (1995), 700–702 | DOI
[8] C. R. Martin, M. Nishizawa, K. Jirage, M. Kang, S. B. Lee, “Controlling ion-transport selectivity in gold nanotubule membranes”, Adv. Mater., 13 (2001), 1351–1362 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[9] M. S. Kang, C. R. Martin, “Investigations of potential-dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method”, Langmuir, 17 (2001), 2753–2759 | DOI
[10] W. Guan, M. A. Reed, “Electric field modulation of the membrane potential in solid-state ion channels”, Nano Lett., 12 (2012), 6441–6447 | DOI
[11] W. Guan, R. Fan, M. A. Reed, “Field-effect reconfigurable nanofluidic ionic diodes”, Nat. Commun., 2 (2011), 506 | DOI | Zbl
[12] P. Gao, C. R. Martin, “Voltage charging enhances ionic conductivity in gold nanotube membranes”, ACS Nano, 8 (2014), 8266–8272 | DOI
[13] Q. Wang, C.S. Cha, J. Lu, L. Zhuang, “Ionic conductivity of pure water in charged porous matrix”, Chem. Phys. Chem., 13 (2012), 514–519 | DOI
[14] D.V. Lebedev, A.V. Shiverskiy, M.M. Simunin, V.S. Solodovnichenko, V.A. Parfenov, V.V. Bykanova, S.V. Khartov, I.I. Ryzhkov, “Preparation and ionic selectivity of carbon–coated alumina nanofiber membranes”, Petrol. Chem., 57:4 (2017), 306–317 | DOI
[15] V.S. Solodovnichenko, D.V. Lebedev, V.V. Bykanova, A.V. Shiverskiy, M.M. Simunin, V.A. Parfenov, I.I. Ryzhkov, “Carbon coated alumina nanofiber membranes for selective ion transport”, Adv. Engineer. Mater., 20 (2017), 1700244 | DOI
[16] D.V. Lebedev, V.S. Solodovnichenko, M.M. Simunin, I.I. Ryzhkov, “Effect of electric field on ion transport on nanoporous membranes with conductive surface”, Petrol. Chem., 58:6 (2018), 474–481 | DOI
[17] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Shiverskiy, M.M. Simunin, “Induced-charge enhancement of the diffusion potential in membranes with polarizable nanopores”, Phys. Rev. Lett., 119 (2017), 226001 | DOI
[18] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Minakov, M.M. Simunin, “On the origin of membrane potential in membranes with polarizable nanopores”, J. Membr. Sci., 549 (2018), 616–630 | DOI
[19] I.I. Ryzhkov, A.S. Vyatkin, A.V. Minakov, “Theoretical study of electrolyte diffusion through polarizable nanopores”, J. Siber. Fed. Univer.: Math. Phys., 11:4 (2018), 494–504 | DOI
[20] M.Z. Bazant, T.M. Squires, “Induced–charge electrokinetic phenomena”, Curr. Op. Coll. Inter. Sci., 15 (2010), 203–213 | DOI
[21] S. Rubin, M.E. Suss, P.M. Biesheuvel, M. Bercovici, “Induced–charge capacitive deionization: the electrokinetic response of a porous particle to an external electric field”, Phys. Rev. Lett., 117 (2016), 234502 | DOI
[22] C. Amatore, A.I. Oleinick, I. Svir, “Theory of ion transport in electrochemically switchable nanoporous metallized membranes”, Chem. Phys. Chem., 10 (2009), 211–221 | DOI
[23] P. Ramírez, S. Mafé, A. Alcaraz, J. Cervera, “Modeling of pH–switchable ion transport and selectivity in nanopore membranes with fixed charges”, J. Phys. Chem. B, 107 (2003), 13178–13187 | DOI
[24] R.B. Schoch, J. Han, P. Renaud, “Transport phenomena in nanofluidics”, Rev. Modern Phys., 80 (2008), 839–883 | DOI
[25] R. Qiao, N.R. Aluru, “Ion concentrations and velocity profiles in nanochannel electroosmotic flows”, J. Chem. Phys., 118 (2003), 4692–4701 | DOI
[26] V.E. Zalizniak, O.A. Zolotov, I.I. Ryzhkov, “Effective molecular dynamics model of ionic solutions for large–scale calculations”, J. Appl. Mech. Tech. Phys., 59 (2018), 41–51 | DOI | MR
[27] K.L. Yang, S. Yiacoumi, C. Tsouris, “Monte Carlo simulations of electrical double–layer formation in nanopores”, J. Chem. Phys., 117 (2002), 8499–8507 | DOI
[28] H. Yoshida, H. Mizuno, T. Kinjo, H. Washizu, J.L. Barrat, “Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels”, J. Chem. Phys., 140 (2014), 214701 | DOI | MR
[29] D. Duong–Hong, J.S. Wang, G.R. Liu, Y.Z. Chen, J. Han, N.G. Hadjiconstantinou, “Dissipative particle dynamics simulations of electroosmotic flow in nano–fluidic devices”, Microfluid Nanofluid, 4 (2008), 219–225 | DOI
[30] R.J. Gross, J.F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI
[31] P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI
[32] S. Levine, J.R. Marriott, G. Neale, N. Epstein, “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta–potentials”, J. Coll. Inter. Sci., 52:1 (1975), 136–149 | DOI