Distribution of small values of Bohr almost periodic functions with bounded spectrum
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 571-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $f$ a nonzero Bohr almost periodic function on $\mathbb R$ with a bounded spectrum we proved there exist $C_f > 0$ and integer $n > 0$ such that for every $u > 0$ the mean measure of the set $\{\, x \, : \, |f(x)| u \, \}$ is less than $C_f\, u^{1/n}.$ For trigonometric polynomials with $\leq n + 1$ frequencies we showed that $C_f$ can be chosen to depend only on $n$ and the modulus of the largest coefficient of $f.$ We showed this bound implies that the Mahler measure $M(h),$ of the lift $h$ of $f$ to a compactification $G$ of $\mathbb R,$ is positive and discussed the relationship of Mahler measure to the Riemann Hypothesis.
Keywords: almost periodic function, entire function, Beurling factorization, Mahler measure, Riemann hypothesis.
@article{JSFU_2019_12_5_a4,
     author = {Wayne M. Lawton},
     title = {Distribution of small values of {Bohr} almost periodic functions with bounded spectrum},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {571--578},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a4/}
}
TY  - JOUR
AU  - Wayne M. Lawton
TI  - Distribution of small values of Bohr almost periodic functions with bounded spectrum
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 571
EP  - 578
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a4/
LA  - en
ID  - JSFU_2019_12_5_a4
ER  - 
%0 Journal Article
%A Wayne M. Lawton
%T Distribution of small values of Bohr almost periodic functions with bounded spectrum
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 571-578
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a4/
%G en
%F JSFU_2019_12_5_a4
Wayne M. Lawton. Distribution of small values of Bohr almost periodic functions with bounded spectrum. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 571-578. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a4/

[1] N.I. Ahiezer, “On the theory of entire functions of finite degree”, Dokl. Akad. Nauk SSSR, 63 (1948), 475–478 (in Russian) | MR

[2] F. Amoroso, “Algebraic numbers close to $1$ and variants of Mahler's measure”, J. Number Theory, 60 (1996), 80–96 | DOI | MR | Zbl

[3] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978 | MR | Zbl

[4] A.S. Besicovitch, “On generalized almost periodic functions”, Proc. London Math. Soc., 25:2 (1926), 495–512 | DOI | MR | Zbl

[5] A. Beurling, “On two problems concerning linear transformations Hilbert space”, Acta Math., 81 (1949), 239–255 | DOI | MR | Zbl

[6] R.P. Boas, Jr., “Representations of entire functions of exponential type”, Annals of Mathematics, 39:2 (1938), 269–286 ; 40 (1939), 948 | DOI | MR | DOI

[7] R.P. Boas, Jr., Entire Functions, Academic Press, New York, 1954 | MR | Zbl

[8] S. Bochner, “Beitrage zur Theorie der fastperiodischen Funktionen”, Math. Annalen, 96 (1926), 119–147 | DOI | MR | Zbl

[9] H. Bohr, “Zur Theorie der fastperiodischen Funktionen I”, Acta Math., 45 (1924), 29–127 | DOI | MR | Zbl

[10] H. Bohr, “Zur Theorie der fastperiodishen Functionen III Teil. Dirichletenwichlung analytisher Functionen”, Acta Math., 47 (1926), 237–281 | DOI | MR | Zbl

[11] D.W. Boyd, “Kronecker's theorem and Lehmer's problem for polynomials in several variables”, J. Number Theory, 13 (1981), 116–121 | DOI | MR | Zbl

[12] P. Erdös, P. Turán, “On the distribution of roots of polynomials”, Annals of Mathematics, 51:1 (1950), 105–119 | DOI | MR | Zbl

[13] G. Everest, T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999 | MR | Zbl

[14] J. Franel, “Les suites de Farey et le probléme des nombres premiers”, Gött. Nachr., 1924, 198–201 | MR | Zbl

[15] F. Hausdorff, “Eine Ausdehnung des Parsevalschen Satzes über Fourierreihen”, Mathematische Zeitschrift, 16 (1923), 163–69 | DOI | MR

[16] J. Jensen, “Sur un nouvelet important théoréme de la théorie des fonctions”, Acta Mathematica, 22 (1899), 359–364 | DOI | MR | Zbl

[17] E. Landau, “Bemerkungen zur vorstehenden Abhandlungen von Herrn Franel”, Gött. Nachr., 1924, 202–206 | MR | Zbl

[18] W. Lawton, “A problem of Boyd concerning geometric means of polynomials”, Journal of Number Theory, 16:3 (1983), 356–362 | DOI | MR | Zbl

[19] W. Lawton, “Multiresolution analysis on quasilattices”, Poincare Journal of Analysis $\$ Applications, 2 (2015), 37–52, arXiv: 1504.03505v1 | MR | Zbl

[20] D.H. Lehmer, “Factorization of certain cyclotomic functions”, Annals of Mathematics, 34:2 (1933), 461–479 | DOI | MR | Zbl

[21] B. Ja. Levin, Distribution of Roots of Entire Functions, Translations of Mathematical Monographs, 5, Revised Edition, American Mathematical Society, 1964 | DOI

[22] K. Mahler, “An application of Jensen's formula to polynomials”, Mathematica, 7 (1960), 98–100 | Zbl

[23] K. Mahler, “On some inequalities for polynomials in several variables”, Proc. London Mathematical Society, 37 (1962), 341–344 | DOI | Zbl

[24] L. Pontryagin, Topological Groups, Princeton University Press, 1946

[25] E.C. Titchmarsh, “The zeros of certain integral functions”, Proc. London Mathematical Society, 25 (1926), 283–302 | DOI | Zbl

[26] W.H. Young, “On the determination of the summability of a function by means of its Fourier constants”, Proc. London Math. Soc., 12 (1913), 71–88 | DOI | Zbl