The closure and the interior of $ \mathbb C$-convex sets
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 475-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

$ \mathbb C $-convexity of the closure, interiors and their lineal convexity are considered for $ \mathbb C $-convex sets under additional conditions of boundedness and nonempty interiors. The following questions on closure and the interior of $\mathbb C $-convex sets were tackled The closure of a bounded $ \mathbb C $-convex domain may not be lineally-convex.    The closure of a non-empty interior of a $ \mathbb C $-convex compact in $ \mathbb C^n $ may not coincide with the original compact. The interior of the closure of a bounded $ \mathbb C $-convex domain always coincides with the domain itself. The questions were formulated by Yu. B. Zelinsky.
Keywords: strong linear convexity, $ \mathbb C $-convexity, projective convexity, lineal convexity, Fantappie transform, Aizenberg–Martineau duality.
@article{JSFU_2019_12_4_a9,
     author = {Sergej V. Znamenskij},
     title = {The closure and the interior of $ \mathbb C$-convex sets},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {475--482},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/}
}
TY  - JOUR
AU  - Sergej V. Znamenskij
TI  - The closure and the interior of $ \mathbb C$-convex sets
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 475
EP  - 482
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/
LA  - en
ID  - JSFU_2019_12_4_a9
ER  - 
%0 Journal Article
%A Sergej V. Znamenskij
%T The closure and the interior of $ \mathbb C$-convex sets
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 475-482
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/
%G en
%F JSFU_2019_12_4_a9
Sergej V. Znamenskij. The closure and the interior of $ \mathbb C$-convex sets. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 475-482. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/

[1] A. Martineau, “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163:1 (1966), 62–88 | DOI | MR | Zbl

[2] M. Andersson, M. Passare, R. Sigurdsson, Complex convexity and analytic functionals, Birkhäuser, Basel–Boston–Berlin, 2004 | MR | Zbl

[3] L. A. Aizenberg, “Decomposition of holomorphic functions of several complex variables into partial fractions”, Siberian Math. J., 8:5 (1967), 859–872 | DOI | MR

[4] L. Ya. Makarova, “Sufficient conditions for strong linear convexity for polyhedra”, Some questions of multidimensional complex analysis, IF Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk, 1980, 89–94 (in Russian) | MR

[5] Yu. B. Zelinskii, “On convexity conditions for strongly linearly convex sets”, Current issues of real and complex analysis, Mathematics Institute, Academy of Sciences of the Ukrainian SSR, Kiev, 1984, 64–71 (in Russian) | MR

[6] L. A. Aizenberg, “The general form of a continuous linear functional on the space of functions holomorphic in a convex region of $C^n$”, Dokl. Akad. Nauk SSSR, 166:5 (1966), 1015–1018 | MR

[7] Sh. A. Dautov, V. A. Stepanenko, “A simple example of a bounded linearly convex but nonconvex domain with a smooth boundary”, Holomorphic Functions of Several Complex Variables, IF Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk, 1972, 175–179 (in Russian) | MR

[8] V. A. Stepanenko, “On one example of a bounded linearly convex but nonconvex domain with a smooth boundary in $\Bbb{C}^n$”, Holomorphic Functions of Several Complex Variables, IF Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk, 1976, 200–202 (in Russian)

[9] L. A. Aizenberg, “7.1. Linear functionals on spaces of analytic functions and linear convexity in $\mathbb C^n$”, J. Soviet Math., 26:5 (1984), 2104–2106 | DOI

[10] L. A. Aizenberg, A. P. Yuzhakov, L. Ya. Makarova, “Linear convexity in $\mathbb{C}^n$”, Sib. Mat. Zh., 9:4 (1968), 731–746 (in Russian) | MR | Zbl

[11] P. Pflug. W. Zwonek, “Exhausting domains of the symmetrized bidisc”, Ark. Mat., 50 (2012), 397–402 | DOI | MR | Zbl

[12] A. P. Yuzhakov, V. P. Krivokolesko, “Some properties of linearly convex domains with smooth boundaries in $\Bbb C^n$”, Siberian Math. J., 12:2 (1971), 323–327 | DOI | MR | Zbl

[13] V. M. Trutnev, “Properties of functions, holomorphic on strongly linear convex sets”, Some Properties of Holomorphic Functions of Several Complex Variables, IF Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk, 1973, 139–155 (in Russian) | MR

[14] V. P. Havin, N. K. Nikolski (eds.), Linear and complex analysis problem book 3, v. 1, Springer, 2006, 498 pp. | MR

[15] S. V. Znamenskii, “A geometric criterion for strong linear convexity”, Funct. Anal. Appl., 13:3 (1979), 224–225 | DOI | MR

[16] S. V. Znamenskii, “Strong linear convexity. I. Duality of spaces of holomorphic functions”, Siberian Math. J., 26:3 (1985), 331–341 | DOI | MR

[17] M. Andersson, M. Passare, “Complex Kergin interpolation and Fantappiè transform”, Mathematische Zeitschrift, 208 (1991), 257-271 | DOI | MR

[18] L. Hörmander, Notions of convexity, Birkhäuser, Basel–Boston–Berlin, 1994 | MR | Zbl

[19] A. V. Abanin, Le Hai Khoi, “Cauchy–Fantappiè transformation and mutual dualities between $A^{-\infty} (\Omega)$ and $A^\infty(\widetilde\Omega)$ for lineally convex domains”, Complex Variables and Elliptic Equations, 58:11 (2013), 1615–1632 | DOI | MR | Zbl

[20] A. Martineau, “Unicité du support d'une fonctionelle analytique: Une théorème de C. O. Kiselman”, Bull. Sci. Math., 92 (1968), 131–141 | MR

[21] M. Andersson, “Unique linearly convex support of an analytic functional”, Arkiv för Matematik, 31:1 (1993), 1–12 | DOI | MR

[22] S. V. Znamenskii, “Existence of holomorphic preimages in all directions”, Math. Notes, 45:1 (1989), 11–13 | DOI | MR

[23] V. M. Trutnev, “Analogue of Laurent series for functions of several complex variables, holomorphic on strongly linearly convex sets”, Holomorphic Functions of Several Complex Variables, IF Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk, 1972, 139–152 (in Russian) | MR

[24] S. V. Znamenskii, “Tomography in spaces of analytic functionals”, Doklady Mathematics, 41:3 (1990), 506–509 | MR

[25] Yu. B. Zelinskii, Convexity. Selected topics, Institute of mathematics NASU, Kiev, 2012, 279 pp. (in Russian) | DOI

[26] S. V. Znamenskii, “Seven $\mathbb{C}$-convexity problems”, Complex analysis in modern mathematics, On the 80th anniversary of the birth of B. V. Shabat, ed. Chirka E. M., FAZIS, M., 2001, 123–131 (in Russian) | MR

[27] N. Nikolov, The symmetrized polydisc cannot be exhausted by domains biholomorphic to convex domains, 2005, arXiv: math.CV/0507190 | MR

[28] Yu. Zelinskii, Some open questions of theory of mappings and complex linearly convex analysis (Alba Iulia, 16–22 May 2011), 30 pp.

[29] Yu. Zelinskii, Geometric Methods in Complex Analysis II (Bedlewo, 8–13 May 2011), 38 pp.

[30] S. V. Znamenskii, L. N. Znamenskaya, “Spiral connectedness of the sections and projections of $\mathbb{C}$-convex sets”, Math. Notes, 59:3 (1996), 253–260 | DOI | MR