The closure and the interior of $ \mathbb C$-convex sets
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 475-482
Voir la notice de l'article provenant de la source Math-Net.Ru
$ \mathbb C $-convexity of the closure, interiors and their lineal convexity are considered for $ \mathbb C $-convex sets under additional conditions of boundedness and nonempty interiors. The following questions on closure and the interior of $\mathbb C $-convex sets were tackled
The closure of a bounded $ \mathbb C $-convex domain may not be lineally-convex.
The closure of a non-empty interior of a $ \mathbb C $-convex compact in $ \mathbb C^n $ may not coincide with the original compact. The interior of the closure of a bounded $ \mathbb C $-convex domain always coincides with the domain itself.
The questions were formulated by Yu. B. Zelinsky.
Keywords:
strong linear convexity, $ \mathbb C $-convexity, projective convexity, lineal convexity, Fantappie transform, Aizenberg–Martineau duality.
@article{JSFU_2019_12_4_a9,
author = {Sergej V. Znamenskij},
title = {The closure and the interior of $ \mathbb C$-convex sets},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {475--482},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/}
}
TY - JOUR AU - Sergej V. Znamenskij TI - The closure and the interior of $ \mathbb C$-convex sets JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 475 EP - 482 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/ LA - en ID - JSFU_2019_12_4_a9 ER -
Sergej V. Znamenskij. The closure and the interior of $ \mathbb C$-convex sets. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 475-482. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a9/