Locally explicit fundamental principle for homogeneous convolution equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 466-474

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper a locally explicit version of Ehrenpreis's Fundamental Principle for a system of homogeneous convolution equations $\check{f}\ast \mu_j=0$, $j=1,\dots, m $, $f\in\mathcal{E}(\mathbb{R}^n)$, $\mu_j\in\mathcal{E}^{\prime}(\mathbb{R}^n)$, is derived, when the Fourier Transforms $\hat{\mu}_j$, $j=1,\dots, m$ are slowly decreasing entire functions that form a complete intersection in $\mathbb{C}^n$.
Keywords: fundamental principle
Mots-clés : division formula.
@article{JSFU_2019_12_4_a8,
     author = {Alekos Vidras},
     title = {Locally explicit fundamental principle for homogeneous convolution equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {466--474},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/}
}
TY  - JOUR
AU  - Alekos Vidras
TI  - Locally explicit fundamental principle for homogeneous convolution equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 466
EP  - 474
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/
LA  - en
ID  - JSFU_2019_12_4_a8
ER  - 
%0 Journal Article
%A Alekos Vidras
%T Locally explicit fundamental principle for homogeneous convolution equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 466-474
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/
%G en
%F JSFU_2019_12_4_a8
Alekos Vidras. Locally explicit fundamental principle for homogeneous convolution equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 466-474. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/