Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_4_a8, author = {Alekos Vidras}, title = {Locally explicit fundamental principle for homogeneous convolution equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {466--474}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/} }
TY - JOUR AU - Alekos Vidras TI - Locally explicit fundamental principle for homogeneous convolution equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 466 EP - 474 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/ LA - en ID - JSFU_2019_12_4_a8 ER -
%0 Journal Article %A Alekos Vidras %T Locally explicit fundamental principle for homogeneous convolution equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 466-474 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/ %G en %F JSFU_2019_12_4_a8
Alekos Vidras. Locally explicit fundamental principle for homogeneous convolution equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 466-474. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/
[1] L.A. Aizenberg, A.P. Yuzhakov, Integral Representations in Multidimensional Complex Analysis, Transl. AMS, 58, 1980 | MR
[2] M. Andersson, M. Passare, “A shortcut to weighted representation formulas for holomorphic functions”, Ark. Mat., 26:1 (1988), 1–12 | DOI | MR | Zbl
[3] C.A. Berenstein, B.A. Taylor, “Interpolation problems in Cn with applications to harmonic analysis”, J. Analyse Math., 38 (1980), 188–254 | DOI | MR | Zbl
[4] C.A. Berenstein, R. Gay, Complex Analysis and Special Topics in Harmonic Analysis, Springer-Verlag, 1991 | MR
[5] C.A. Berenstein, R. Gay, A. Vidras, A. Yger, Residue currents and Bézout identities, Progress in Mathematics, 114, Birkhäuser, 1993 | MR
[6] C.A. Berenstein, A. Yger, “About Ehrenpreis' Fundamental Principle”, Geom. and alg. aspects in several complex variables, eds. C.A. Berenstein, D.C. Struppa, Editel, Rende, 1991, 47–61 | MR | Zbl
[7] B. Berndtsson, M. Andersson, “Henkin-Ramirez formulas with weight factors”, Ann. Inst. Fourier (Grenoble), 32:3 (1982), 91–110 | DOI | MR | Zbl
[8] B. Berndtsson, M. Passare, “Integral formulas and an explicit version of the fundamental principle”, J. Funct. Anal., 84:2 (1989), 358–372 | DOI | MR | Zbl
[9] L. Ehrenpreis, Fourier Analysis in Several Complex variables, Wiley, New York, 1970 | MR | Zbl
[10] S. Hansen, “Localizable analytically uniform spaces and the fundamental principle”, Tran. of AMS, 264:1 (1981), 235–250 | DOI | MR | Zbl