Locally explicit fundamental principle for homogeneous convolution equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 466-474
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper a locally explicit version of Ehrenpreis's Fundamental Principle for a system of homogeneous convolution equations $\check{f}\ast \mu_j=0$, $j=1,\dots, m $, $f\in\mathcal{E}(\mathbb{R}^n)$, $\mu_j\in\mathcal{E}^{\prime}(\mathbb{R}^n)$, is derived, when the Fourier Transforms $\hat{\mu}_j$, $j=1,\dots, m$ are slowly decreasing entire functions that form a complete intersection in $\mathbb{C}^n$.
Keywords:
fundamental principle
Mots-clés : division formula.
Mots-clés : division formula.
@article{JSFU_2019_12_4_a8,
author = {Alekos Vidras},
title = {Locally explicit fundamental principle for homogeneous convolution equations},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {466--474},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/}
}
TY - JOUR AU - Alekos Vidras TI - Locally explicit fundamental principle for homogeneous convolution equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 466 EP - 474 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/ LA - en ID - JSFU_2019_12_4_a8 ER -
%0 Journal Article %A Alekos Vidras %T Locally explicit fundamental principle for homogeneous convolution equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 466-474 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/ %G en %F JSFU_2019_12_4_a8
Alekos Vidras. Locally explicit fundamental principle for homogeneous convolution equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 466-474. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a8/