The de Rham cohomology through Hilbert space methods
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 455-465

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss canonical representations of the de Rham cohomology on a compact manifold with boundary. They are obtained by minimising the energy integral in a Hilbert space of differential forms that belong along with the exterior derivative to the domain of the adjoint operator. The corresponding Euler–Lagrange equations reduce to an elliptic boundary value problem on the manifold, which is usually referred to as the Neumann problem after Spencer.
Keywords: De Rham complex, cohomology, Hodge theory, Neumann problem.
@article{JSFU_2019_12_4_a7,
     author = {Ihsane Malass and Nikolai Tarkhanov},
     title = {The de {Rham} cohomology through {Hilbert} space methods},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {455--465},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/}
}
TY  - JOUR
AU  - Ihsane Malass
AU  - Nikolai Tarkhanov
TI  - The de Rham cohomology through Hilbert space methods
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 455
EP  - 465
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/
LA  - en
ID  - JSFU_2019_12_4_a7
ER  - 
%0 Journal Article
%A Ihsane Malass
%A Nikolai Tarkhanov
%T The de Rham cohomology through Hilbert space methods
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 455-465
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/
%G en
%F JSFU_2019_12_4_a7
Ihsane Malass; Nikolai Tarkhanov. The de Rham cohomology through Hilbert space methods. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 455-465. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/