The de Rham cohomology through Hilbert space methods
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 455-465.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss canonical representations of the de Rham cohomology on a compact manifold with boundary. They are obtained by minimising the energy integral in a Hilbert space of differential forms that belong along with the exterior derivative to the domain of the adjoint operator. The corresponding Euler–Lagrange equations reduce to an elliptic boundary value problem on the manifold, which is usually referred to as the Neumann problem after Spencer.
Keywords: De Rham complex, cohomology, Hodge theory, Neumann problem.
@article{JSFU_2019_12_4_a7,
     author = {Ihsane Malass and Nikolai Tarkhanov},
     title = {The de {Rham} cohomology through {Hilbert} space methods},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {455--465},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/}
}
TY  - JOUR
AU  - Ihsane Malass
AU  - Nikolai Tarkhanov
TI  - The de Rham cohomology through Hilbert space methods
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 455
EP  - 465
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/
LA  - en
ID  - JSFU_2019_12_4_a7
ER  - 
%0 Journal Article
%A Ihsane Malass
%A Nikolai Tarkhanov
%T The de Rham cohomology through Hilbert space methods
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 455-465
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/
%G en
%F JSFU_2019_12_4_a7
Ihsane Malass; Nikolai Tarkhanov. The de Rham cohomology through Hilbert space methods. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 455-465. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/

[1] L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126:1–2 (1971), 11–51 | MR | Zbl

[2] L. Fontana, S.G. Krantz, M. M. Peloso, “Hodge theory in the Sobolev topology for the de Rham complex”, Memoirs of the AMS, 131, no. 622, 1998, 1–100 | DOI | MR

[3] M.P. Gaffney, “Hilbert space methods in the theory of harmonic integrals”, Trans. Amer. Math. Soc., 78 (1955), 551–590 | DOI | MR

[4] J.J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. I: II”, Ann. of Math., 78 (1963), 112–148 ; Ann. of Math., 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl

[5] J. J. Kohn, L. Nirenberg, “Non-coercive boundary value problems”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl

[6] C. B. Morrey, “A variational method in the theory of harmonic integrals”, Amer. J. Math., 78:1 (1956), 137–170 | DOI | MR | Zbl

[7] C. B. Morrey, “The $\bar{\partial}$-Neumann problem on strongly pseudo-convex manifolds”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 171–178 | MR

[8] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin et al., 1966 | MR | Zbl

[9] B.-W. Schulze, “Topologies and invertibility in operator spaces with symbolic structures”, Problems and Methods in Mathematical Physics, Teubner-Texte zur Mathematik, 111, BSB Teubner, Leipzig, 1989, 257–270 | MR

[10] W.J. Sweeney, “Coerciveness in the Neumann problem”, J. Diff. Geom., 6:1971/72, 375–393 | MR | Zbl

[11] D.C. Spencer, “Harmonic integrals and Neumann problems associated with linear partial differential equations”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 253–260 | MR

[12] N. Tarkhanov, “On a characteristic property of closed exterior differential forms”, On Holomorphic Functions of Several Complex Variables, Inst. of Physics, Krasnoyarsk, 1976, 203–209

[13] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl

[14] N. Tarkhanov, “Euler characteristic of Fredholm quasicomplexes”, Funct. Anal. and its Appl., 41:4 (2007), 87–93 | DOI | MR | Zbl

[15] R.O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 | MR | Zbl