Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_4_a7, author = {Ihsane Malass and Nikolai Tarkhanov}, title = {The de {Rham} cohomology through {Hilbert} space methods}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {455--465}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/} }
TY - JOUR AU - Ihsane Malass AU - Nikolai Tarkhanov TI - The de Rham cohomology through Hilbert space methods JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 455 EP - 465 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/ LA - en ID - JSFU_2019_12_4_a7 ER -
%0 Journal Article %A Ihsane Malass %A Nikolai Tarkhanov %T The de Rham cohomology through Hilbert space methods %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 455-465 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/ %G en %F JSFU_2019_12_4_a7
Ihsane Malass; Nikolai Tarkhanov. The de Rham cohomology through Hilbert space methods. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 455-465. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a7/
[1] L. Boutet de Monvel, “Boundary problems for pseudo-differential operators”, Acta Math., 126:1–2 (1971), 11–51 | MR | Zbl
[2] L. Fontana, S.G. Krantz, M. M. Peloso, “Hodge theory in the Sobolev topology for the de Rham complex”, Memoirs of the AMS, 131, no. 622, 1998, 1–100 | DOI | MR
[3] M.P. Gaffney, “Hilbert space methods in the theory of harmonic integrals”, Trans. Amer. Math. Soc., 78 (1955), 551–590 | DOI | MR
[4] J.J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. I: II”, Ann. of Math., 78 (1963), 112–148 ; Ann. of Math., 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl
[5] J. J. Kohn, L. Nirenberg, “Non-coercive boundary value problems”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl
[6] C. B. Morrey, “A variational method in the theory of harmonic integrals”, Amer. J. Math., 78:1 (1956), 137–170 | DOI | MR | Zbl
[7] C. B. Morrey, “The $\bar{\partial}$-Neumann problem on strongly pseudo-convex manifolds”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 171–178 | MR
[8] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin et al., 1966 | MR | Zbl
[9] B.-W. Schulze, “Topologies and invertibility in operator spaces with symbolic structures”, Problems and Methods in Mathematical Physics, Teubner-Texte zur Mathematik, 111, BSB Teubner, Leipzig, 1989, 257–270 | MR
[10] W.J. Sweeney, “Coerciveness in the Neumann problem”, J. Diff. Geom., 6:1971/72, 375–393 | MR | Zbl
[11] D.C. Spencer, “Harmonic integrals and Neumann problems associated with linear partial differential equations”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 253–260 | MR
[12] N. Tarkhanov, “On a characteristic property of closed exterior differential forms”, On Holomorphic Functions of Several Complex Variables, Inst. of Physics, Krasnoyarsk, 1976, 203–209
[13] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl
[14] N. Tarkhanov, “Euler characteristic of Fredholm quasicomplexes”, Funct. Anal. and its Appl., 41:4 (2007), 87–93 | DOI | MR | Zbl
[15] R.O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 | MR | Zbl