Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_4_a6, author = {Armen G. Sergeev}, title = {Adiabatic limit in {Yang--Mills} equations in $\mathbb{R}^4$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {449--454}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/} }
TY - JOUR AU - Armen G. Sergeev TI - Adiabatic limit in Yang--Mills equations in $\mathbb{R}^4$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 449 EP - 454 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/ LA - en ID - JSFU_2019_12_4_a6 ER -
Armen G. Sergeev. Adiabatic limit in Yang--Mills equations in $\mathbb{R}^4$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 449-454. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/
[1] M.F. Atiayh, “Instantons in two and four dimensions”, Comm. Math. Phys., 93 (1984), 437–451 | DOI | MR
[2] I.V. Beloshapka, A.G. Sergeev, “Harmonic spheres in the Hilbert-Schmidt Grassmannian”, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 13–31 | MR | Zbl
[3] S.K. Donaldson, “Instantons and geometric invariant theory”, Comm. Math. Phys., 93 (1984), 453–460 | DOI | MR | Zbl
[4] J. Isenberg, Ph.B. Yasskin, P.S. Green, “Non-self-dual gauge fields”, Phys. Lett., 78B (1978), 464–468
[5] S. Jarvis, P. Norbury, “Degenerating metrics and instantons on the four-sphere”, J. Geom. Phys., 27 (1998), 79–99 | DOI | MR
[6] Yu.I. Manin, Gauge Field Theory and Complex Geometry, Springer, 1997 | MR | Zbl
[7] R.V. Palvelev, A.G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations”, Proc. Steklov Math. Inst., 277 (2012), 191–205 | DOI | MR | Zbl
[8] A.D. Popov, Loop groups in Yang–Mills theory, Institute of Theoretical Physics, Hannover, 2016, arXiv: 1505.06634
[9] D. Salamon, Notes on flat connections and the loop group, University of Warwick, 1998 | Zbl
[10] A.G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Math. Inst., 289 (2015), 227–285 | DOI | MR | Zbl
[11] A.G. Sergeev, “On the moduli space of Yang-Mills fields on $\mathbb R^4$”, Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2015, 167–176 | DOI | MR | Zbl
[12] A.G. Sergeev, “Harmonic spheres conjecture”, Theor. Math. Phys., 164 (2010), 1140–1150 | DOI | Zbl
[13] C.H. Taubes, “$SW \Rightarrow Gr$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl
[14] C.H. Taubes, “$Gr \Rightarrow SW$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | DOI | MR | Zbl
[15] E. Witten, “An interpretation of classical Yang–Mills fields”, Phys. Lett., 78B (1978), 394–398 | DOI