Adiabatic limit in Yang--Mills equations in $\mathbb{R}^4$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 449-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our goal is to present an approach to the proof of the harmonic spheres conjecture based on the adiabatic limit construction. This construction allows to associate with an arbitrary Yang–Mills $G$-field on the Euclidean 4-dimensional space a harmonic map of the Riemann sphere to the loop space of the group $G$.
Keywords: Yang–Mills fields, loop spaces, harmonic maps.
Mots-clés : adiabatic limit
@article{JSFU_2019_12_4_a6,
     author = {Armen G. Sergeev},
     title = {Adiabatic limit in {Yang--Mills} equations in $\mathbb{R}^4$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {449--454},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/}
}
TY  - JOUR
AU  - Armen G. Sergeev
TI  - Adiabatic limit in Yang--Mills equations in $\mathbb{R}^4$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 449
EP  - 454
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/
LA  - en
ID  - JSFU_2019_12_4_a6
ER  - 
%0 Journal Article
%A Armen G. Sergeev
%T Adiabatic limit in Yang--Mills equations in $\mathbb{R}^4$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 449-454
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/
%G en
%F JSFU_2019_12_4_a6
Armen G. Sergeev. Adiabatic limit in Yang--Mills equations in $\mathbb{R}^4$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 449-454. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/

[1] M.F. Atiayh, “Instantons in two and four dimensions”, Comm. Math. Phys., 93 (1984), 437–451 | DOI | MR

[2] I.V. Beloshapka, A.G. Sergeev, “Harmonic spheres in the Hilbert-Schmidt Grassmannian”, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 13–31 | MR | Zbl

[3] S.K. Donaldson, “Instantons and geometric invariant theory”, Comm. Math. Phys., 93 (1984), 453–460 | DOI | MR | Zbl

[4] J. Isenberg, Ph.B. Yasskin, P.S. Green, “Non-self-dual gauge fields”, Phys. Lett., 78B (1978), 464–468

[5] S. Jarvis, P. Norbury, “Degenerating metrics and instantons on the four-sphere”, J. Geom. Phys., 27 (1998), 79–99 | DOI | MR

[6] Yu.I. Manin, Gauge Field Theory and Complex Geometry, Springer, 1997 | MR | Zbl

[7] R.V. Palvelev, A.G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations”, Proc. Steklov Math. Inst., 277 (2012), 191–205 | DOI | MR | Zbl

[8] A.D. Popov, Loop groups in Yang–Mills theory, Institute of Theoretical Physics, Hannover, 2016, arXiv: 1505.06634

[9] D. Salamon, Notes on flat connections and the loop group, University of Warwick, 1998 | Zbl

[10] A.G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Math. Inst., 289 (2015), 227–285 | DOI | MR | Zbl

[11] A.G. Sergeev, “On the moduli space of Yang-Mills fields on $\mathbb R^4$”, Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2015, 167–176 | DOI | MR | Zbl

[12] A.G. Sergeev, “Harmonic spheres conjecture”, Theor. Math. Phys., 164 (2010), 1140–1150 | DOI | Zbl

[13] C.H. Taubes, “$SW \Rightarrow Gr$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl

[14] C.H. Taubes, “$Gr \Rightarrow SW$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | DOI | MR | Zbl

[15] E. Witten, “An interpretation of classical Yang–Mills fields”, Phys. Lett., 78B (1978), 394–398 | DOI