Adiabatic limit in Yang–Mills equations in $\mathbb{R}^4$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 449-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our goal is to present an approach to the proof of the harmonic spheres conjecture based on the adiabatic limit construction. This construction allows to associate with an arbitrary Yang–Mills $G$-field on the Euclidean 4-dimensional space a harmonic map of the Riemann sphere to the loop space of the group $G$.
Keywords: Yang–Mills fields, loop spaces, harmonic maps.
Mots-clés : adiabatic limit
@article{JSFU_2019_12_4_a6,
     author = {Armen G. Sergeev},
     title = {Adiabatic limit in {Yang{\textendash}Mills} equations in $\mathbb{R}^4$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {449--454},
     year = {2019},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/}
}
TY  - JOUR
AU  - Armen G. Sergeev
TI  - Adiabatic limit in Yang–Mills equations in $\mathbb{R}^4$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 449
EP  - 454
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/
LA  - en
ID  - JSFU_2019_12_4_a6
ER  - 
%0 Journal Article
%A Armen G. Sergeev
%T Adiabatic limit in Yang–Mills equations in $\mathbb{R}^4$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 449-454
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/
%G en
%F JSFU_2019_12_4_a6
Armen G. Sergeev. Adiabatic limit in Yang–Mills equations in $\mathbb{R}^4$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 449-454. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a6/

[1] M.F. Atiayh, “Instantons in two and four dimensions”, Comm. Math. Phys., 93 (1984), 437–451 | DOI | MR

[2] I.V. Beloshapka, A.G. Sergeev, “Harmonic spheres in the Hilbert-Schmidt Grassmannian”, Amer. Math. Soc. Transl. Ser. 2, 234, Amer. Math. Soc., Providence, RI, 2014, 13–31 | MR | Zbl

[3] S.K. Donaldson, “Instantons and geometric invariant theory”, Comm. Math. Phys., 93 (1984), 453–460 | DOI | MR | Zbl

[4] J. Isenberg, Ph.B. Yasskin, P.S. Green, “Non-self-dual gauge fields”, Phys. Lett., 78B (1978), 464–468

[5] S. Jarvis, P. Norbury, “Degenerating metrics and instantons on the four-sphere”, J. Geom. Phys., 27 (1998), 79–99 | DOI | MR

[6] Yu.I. Manin, Gauge Field Theory and Complex Geometry, Springer, 1997 | MR | Zbl

[7] R.V. Palvelev, A.G. Sergeev, “Justification of the adiabatic principle for hyperbolic Ginzburg–Landau equations”, Proc. Steklov Math. Inst., 277 (2012), 191–205 | DOI | MR | Zbl

[8] A.D. Popov, Loop groups in Yang–Mills theory, Institute of Theoretical Physics, Hannover, 2016, arXiv: 1505.06634

[9] D. Salamon, Notes on flat connections and the loop group, University of Warwick, 1998 | Zbl

[10] A.G. Sergeev, “Adiabatic limit in the Ginzburg–Landau and Seiberg–Witten equations”, Proc. Steklov Math. Inst., 289 (2015), 227–285 | DOI | MR | Zbl

[11] A.G. Sergeev, “On the moduli space of Yang-Mills fields on $\mathbb R^4$”, Geometric Methods in Physics, Trends in Mathematics, Birkhäuser, Basel, 2015, 167–176 | DOI | MR | Zbl

[12] A.G. Sergeev, “Harmonic spheres conjecture”, Theor. Math. Phys., 164 (2010), 1140–1150 | DOI | Zbl

[13] C.H. Taubes, “$SW \Rightarrow Gr$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl

[14] C.H. Taubes, “$Gr \Rightarrow SW$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | DOI | MR | Zbl

[15] E. Witten, “An interpretation of classical Yang–Mills fields”, Phys. Lett., 78B (1978), 394–398 | DOI