The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 503-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

Definition of the discrete primitive function is introduced in the problem of summation over simplex lattice points. The discrete analog of the Newton–Leibniz formula is found.
Keywords: summation of functions, discrete primitive function, discrete analog of the Newton–Leibniz formula.
@article{JSFU_2019_12_4_a12,
     author = {Evgeniy K. Leinartas and Olga A. Shishkina},
     title = {The discrete analog of the {Newton--Leibniz} formula in the problem of summation over simplex lattice points},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {503--508},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/}
}
TY  - JOUR
AU  - Evgeniy K. Leinartas
AU  - Olga A. Shishkina
TI  - The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 503
EP  - 508
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/
LA  - en
ID  - JSFU_2019_12_4_a12
ER  - 
%0 Journal Article
%A Evgeniy K. Leinartas
%A Olga A. Shishkina
%T The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 503-508
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/
%G en
%F JSFU_2019_12_4_a12
Evgeniy K. Leinartas; Olga A. Shishkina. The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 503-508. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/

[1] G. Hardy, Divergent series, Oxford University Press, London, 1949 | MR | Zbl

[2] A.O. Gelfond, Finite Difference Calculus, KomKniga, M., 2006 | MR

[3] A.V. Ustinov, “A Discrete Analog of Euler's Summation Formula”, Mat. Notes, 71:5 (2002), 851–856 | DOI | MR | Zbl

[4] A.V. Ustinov, “A Discrete Analog of the Poisson Summation Formula”, Mathematical Notes, 73:1 (2003), 97–102 | DOI | MR | Zbl

[5] S.P. Tsarev, “On the rational summation problem”, Programming and computer software, 31:2 (2005), 56–59 | DOI | MR | Zbl

[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl

[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl

[8] O.A. Shishkina, “The Euler-Maclaurin Formula for Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 13 (2015), 56–71 | Zbl

[9] O.A. Shishkina, “Bernoulli Polynomials in Several Variables and Summation of Monomials over Lattice Points of a Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 16 (2016), 89–101 | Zbl

[10] O.A. Shishkina, “The Euler-Maclaurin formula and differential operator of infinite order”, Journal of Siberian Federal University, Mathematics $\$ Physics, 8:1 (2015), 86–93 | DOI | MR

[11] B.V. Shabat, Introduction to Complex Analysis, v. 1, Science, 1976 | MR

[12] A.G. Khovansky, S.P. Chulkov, Geometry of the semigroup $\mathbb{Z}_{\geqslant 0}^n$. Applications to combinatorics, algebra and differential equations, MTSNMO, M., 2006 | MR

[13] A.V. Pukhlikov, A.G. Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR

[14] A.V. Pukhlikov, A.G. Khovanskii, “Finitely additive measure of virtual polyhedra”, St. Petersburg Mathematical Journal, 4:2 (1993), 337–356 | MR