Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_4_a12, author = {Evgeniy K. Leinartas and Olga A. Shishkina}, title = {The discrete analog of the {Newton--Leibniz} formula in the problem of summation over simplex lattice points}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {503--508}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/} }
TY - JOUR AU - Evgeniy K. Leinartas AU - Olga A. Shishkina TI - The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 503 EP - 508 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/ LA - en ID - JSFU_2019_12_4_a12 ER -
%0 Journal Article %A Evgeniy K. Leinartas %A Olga A. Shishkina %T The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 503-508 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/ %G en %F JSFU_2019_12_4_a12
Evgeniy K. Leinartas; Olga A. Shishkina. The discrete analog of the Newton--Leibniz formula in the problem of summation over simplex lattice points. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 503-508. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/
[1] G. Hardy, Divergent series, Oxford University Press, London, 1949 | MR | Zbl
[2] A.O. Gelfond, Finite Difference Calculus, KomKniga, M., 2006 | MR
[3] A.V. Ustinov, “A Discrete Analog of Euler's Summation Formula”, Mat. Notes, 71:5 (2002), 851–856 | DOI | MR | Zbl
[4] A.V. Ustinov, “A Discrete Analog of the Poisson Summation Formula”, Mathematical Notes, 73:1 (2003), 97–102 | DOI | MR | Zbl
[5] S.P. Tsarev, “On the rational summation problem”, Programming and computer software, 31:2 (2005), 56–59 | DOI | MR | Zbl
[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl
[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl
[8] O.A. Shishkina, “The Euler-Maclaurin Formula for Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 13 (2015), 56–71 | Zbl
[9] O.A. Shishkina, “Bernoulli Polynomials in Several Variables and Summation of Monomials over Lattice Points of a Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 16 (2016), 89–101 | Zbl
[10] O.A. Shishkina, “The Euler-Maclaurin formula and differential operator of infinite order”, Journal of Siberian Federal University, Mathematics $\$ Physics, 8:1 (2015), 86–93 | DOI | MR
[11] B.V. Shabat, Introduction to Complex Analysis, v. 1, Science, 1976 | MR
[12] A.G. Khovansky, S.P. Chulkov, Geometry of the semigroup $\mathbb{Z}_{\geqslant 0}^n$. Applications to combinatorics, algebra and differential equations, MTSNMO, M., 2006 | MR
[13] A.V. Pukhlikov, A.G. Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR
[14] A.V. Pukhlikov, A.G. Khovanskii, “Finitely additive measure of virtual polyhedra”, St. Petersburg Mathematical Journal, 4:2 (1993), 337–356 | MR