The discrete analog of the Newton–Leibniz formula in the problem of summation over simplex lattice points
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 503-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Definition of the discrete primitive function is introduced in the problem of summation over simplex lattice points. The discrete analog of the Newton–Leibniz formula is found.
Keywords: summation of functions, discrete primitive function, discrete analog of the Newton–Leibniz formula.
@article{JSFU_2019_12_4_a12,
     author = {Evgeniy K. Leinartas and Olga A. Shishkina},
     title = {The discrete analog of the {Newton{\textendash}Leibniz} formula in the problem of summation over simplex lattice points},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {503--508},
     year = {2019},
     volume = {12},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/}
}
TY  - JOUR
AU  - Evgeniy K. Leinartas
AU  - Olga A. Shishkina
TI  - The discrete analog of the Newton–Leibniz formula in the problem of summation over simplex lattice points
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 503
EP  - 508
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/
LA  - en
ID  - JSFU_2019_12_4_a12
ER  - 
%0 Journal Article
%A Evgeniy K. Leinartas
%A Olga A. Shishkina
%T The discrete analog of the Newton–Leibniz formula in the problem of summation over simplex lattice points
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 503-508
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/
%G en
%F JSFU_2019_12_4_a12
Evgeniy K. Leinartas; Olga A. Shishkina. The discrete analog of the Newton–Leibniz formula in the problem of summation over simplex lattice points. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 503-508. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a12/

[1] G. Hardy, Divergent series, Oxford University Press, London, 1949 | MR | Zbl

[2] A.O. Gelfond, Finite Difference Calculus, KomKniga, M., 2006 | MR

[3] A.V. Ustinov, “A Discrete Analog of Euler's Summation Formula”, Mat. Notes, 71:5 (2002), 851–856 | DOI | MR | Zbl

[4] A.V. Ustinov, “A Discrete Analog of the Poisson Summation Formula”, Mathematical Notes, 73:1 (2003), 97–102 | DOI | MR | Zbl

[5] S.P. Tsarev, “On the rational summation problem”, Programming and computer software, 31:2 (2005), 56–59 | DOI | MR | Zbl

[6] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl

[7] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl

[8] O.A. Shishkina, “The Euler-Maclaurin Formula for Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 13 (2015), 56–71 | Zbl

[9] O.A. Shishkina, “Bernoulli Polynomials in Several Variables and Summation of Monomials over Lattice Points of a Rational Parallelotope”, The Bulletin of Irkutsk State University, Series “Mathematics”, 16 (2016), 89–101 | Zbl

[10] O.A. Shishkina, “The Euler-Maclaurin formula and differential operator of infinite order”, Journal of Siberian Federal University, Mathematics $\$ Physics, 8:1 (2015), 86–93 | DOI | MR

[11] B.V. Shabat, Introduction to Complex Analysis, v. 1, Science, 1976 | MR

[12] A.G. Khovansky, S.P. Chulkov, Geometry of the semigroup $\mathbb{Z}_{\geqslant 0}^n$. Applications to combinatorics, algebra and differential equations, MTSNMO, M., 2006 | MR

[13] A.V. Pukhlikov, A.G. Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR

[14] A.V. Pukhlikov, A.G. Khovanskii, “Finitely additive measure of virtual polyhedra”, St. Petersburg Mathematical Journal, 4:2 (1993), 337–356 | MR