Unified transform method for the Schr\"odinger equation on a simple metric graph
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 412-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral-representation of solutions of the initial-boundary value problems for the Schrödinger equation on simple metric graphs was obtained with the use of the Fokas method. This method uses special generalization of the Fourier transform that is referred to as the unified transform. Obtained representation of solutions of the problem for open and closed simple star graphs allows one to identify transmitted, reflected and trapped waves at the graph branching point.
Keywords: Schrödinger equation, metric graph, branched structure, unified transform, initial problem, boundary value problem.
Mots-clés : Fourier transform
@article{JSFU_2019_12_4_a1,
     author = {Gulmirza Khudayberganov and Zarifboy A. Sobirov and Mardonbek R. Eshimbetov},
     title = {Unified transform method for the {Schr\"odinger} equation on a simple metric graph},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {412--420},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/}
}
TY  - JOUR
AU  - Gulmirza Khudayberganov
AU  - Zarifboy A. Sobirov
AU  - Mardonbek R. Eshimbetov
TI  - Unified transform method for the Schr\"odinger equation on a simple metric graph
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 412
EP  - 420
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/
LA  - en
ID  - JSFU_2019_12_4_a1
ER  - 
%0 Journal Article
%A Gulmirza Khudayberganov
%A Zarifboy A. Sobirov
%A Mardonbek R. Eshimbetov
%T Unified transform method for the Schr\"odinger equation on a simple metric graph
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 412-420
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/
%G en
%F JSFU_2019_12_4_a1
Gulmirza Khudayberganov; Zarifboy A. Sobirov; Mardonbek R. Eshimbetov. Unified transform method for the Schr\"odinger equation on a simple metric graph. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 412-420. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/

[1] R. Albert, A.L. Barabasi, “Statistical mechanics of complex networks”, Rev. Mod. Phys. A, 74:1 (2002) | MR

[2] R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function, Cambridge University Press, 2010 | MR | Zbl

[3] T. Kottos, U. Smilansky, “Periodic orbit theory and spectral statistics for quantum graphs”, Ann. Phys., 274:1 (1999), 76–124 | DOI | MR | Zbl

[4] S. Gnutzmann, U. Smilansky, “Quantum graphs: Applications to quantum chaos and universal spectral statistics”, Advances in Physics, 55:5–6 (2006), 527–625 | DOI

[5] S. Gnutzmann, J.P. Keating, F. Piotet, “Eigenfunction statistics on quantum graphs”, Ann. Phys., 325 (2010), 2595–2640 | DOI | MR | Zbl

[6] G.F. Dell'Antonio, E. Costa, “Effective Schrödinger dynamics on o-thin Dirichlet waveguides via quantum graphs: I. Star-shaped graphs”, J. Phys. A, Math. Theor., 43 (2010), 474014 | DOI | MR | Zbl

[7] P. Exner, O. Post, “A General Approximation of Quantum Graph Vertex Couplings by Scaled Schrödinger Operators on Thin Branched Manifolds”, Commun. Math. Phys., 322 (2013), 207–227 | DOI | MR | Zbl

[8] H. Uecker, D. Grieser, Z. Sobirov, D. Babajanov, D. Matrasulov, “Soliton transport in tubular networks: Transmission at vertices in the shrinking limit”, Phys. Rev. E, 91 (2015), 023209 | DOI | MR

[9] G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, Oldenbourg, Munchen–Wien, 1981 | MR | Zbl

[10] W. Rall, “Branching Dendritic Trees and Motoneuron Membrane Resistivity”, Experimental Neurology, 1:5 (1959), 491–527 | DOI

[11] R.R. Poznanski, Mathematical Neuroscience, Academic Press, San Diego, California, 2013

[12] Z.A. Sobirov, M.I. Akhmedov, H. Uecker, “Cauchy problem for the linearized KdV equation on general metric star graphs”, Uzbek Mathematical Journal, 3 (2015), 143–154 | MR

[13] Z.A. Sobirov, D. Babajanov, D. Matrasulov, K. Nakamura, H. Uecker, “Sine-Gordon solitons in networks: Scattering and transmission at vertices”, EPL (Europhysics Letters), 115:5 (2016), 50002 | DOI

[14] D. Mugnolo, D. Noja, C. Seifert, “Airy-type evolution equations on star graphs”, Analysis $\$ PDE, 11:7 (2018), 1625–1652 | DOI | MR | Zbl

[15] N.E. Sheils, D.A. Smith, “Heat equation on a network using the Fokas method”, J. Phys. A: Math. Theor., 48 (2015), 335001 | DOI | MR | Zbl

[16] A.S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. A, 453 (1997), 1411–1443 | DOI | MR | Zbl

[17] A. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, University of Cambridge, Cambridge, United Kingdom, 2008 | MR

[18] N.E. Sheils, Multilayer diffusion in a composite medium with imperfect contact, Institute for Mathematics and Its Applications, 21 Dec. 2016, arXiv: 1610.02945v2 [math.NA] | MR

[19] N.E. Sheils, Interface Problems using the Fokas Method, PhD Dissertation, University of Washington, 2015 | MR