Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_4_a1, author = {Gulmirza Khudayberganov and Zarifboy A. Sobirov and Mardonbek R. Eshimbetov}, title = {Unified transform method for the {Schr\"odinger} equation on a simple metric graph}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {412--420}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/} }
TY - JOUR AU - Gulmirza Khudayberganov AU - Zarifboy A. Sobirov AU - Mardonbek R. Eshimbetov TI - Unified transform method for the Schr\"odinger equation on a simple metric graph JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 412 EP - 420 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/ LA - en ID - JSFU_2019_12_4_a1 ER -
%0 Journal Article %A Gulmirza Khudayberganov %A Zarifboy A. Sobirov %A Mardonbek R. Eshimbetov %T Unified transform method for the Schr\"odinger equation on a simple metric graph %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 412-420 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/ %G en %F JSFU_2019_12_4_a1
Gulmirza Khudayberganov; Zarifboy A. Sobirov; Mardonbek R. Eshimbetov. Unified transform method for the Schr\"odinger equation on a simple metric graph. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 412-420. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a1/
[1] R. Albert, A.L. Barabasi, “Statistical mechanics of complex networks”, Rev. Mod. Phys. A, 74:1 (2002) | MR
[2] R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function, Cambridge University Press, 2010 | MR | Zbl
[3] T. Kottos, U. Smilansky, “Periodic orbit theory and spectral statistics for quantum graphs”, Ann. Phys., 274:1 (1999), 76–124 | DOI | MR | Zbl
[4] S. Gnutzmann, U. Smilansky, “Quantum graphs: Applications to quantum chaos and universal spectral statistics”, Advances in Physics, 55:5–6 (2006), 527–625 | DOI
[5] S. Gnutzmann, J.P. Keating, F. Piotet, “Eigenfunction statistics on quantum graphs”, Ann. Phys., 325 (2010), 2595–2640 | DOI | MR | Zbl
[6] G.F. Dell'Antonio, E. Costa, “Effective Schrödinger dynamics on o-thin Dirichlet waveguides via quantum graphs: I. Star-shaped graphs”, J. Phys. A, Math. Theor., 43 (2010), 474014 | DOI | MR | Zbl
[7] P. Exner, O. Post, “A General Approximation of Quantum Graph Vertex Couplings by Scaled Schrödinger Operators on Thin Branched Manifolds”, Commun. Math. Phys., 322 (2013), 207–227 | DOI | MR | Zbl
[8] H. Uecker, D. Grieser, Z. Sobirov, D. Babajanov, D. Matrasulov, “Soliton transport in tubular networks: Transmission at vertices in the shrinking limit”, Phys. Rev. E, 91 (2015), 023209 | DOI | MR
[9] G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, Oldenbourg, Munchen–Wien, 1981 | MR | Zbl
[10] W. Rall, “Branching Dendritic Trees and Motoneuron Membrane Resistivity”, Experimental Neurology, 1:5 (1959), 491–527 | DOI
[11] R.R. Poznanski, Mathematical Neuroscience, Academic Press, San Diego, California, 2013
[12] Z.A. Sobirov, M.I. Akhmedov, H. Uecker, “Cauchy problem for the linearized KdV equation on general metric star graphs”, Uzbek Mathematical Journal, 3 (2015), 143–154 | MR
[13] Z.A. Sobirov, D. Babajanov, D. Matrasulov, K. Nakamura, H. Uecker, “Sine-Gordon solitons in networks: Scattering and transmission at vertices”, EPL (Europhysics Letters), 115:5 (2016), 50002 | DOI
[14] D. Mugnolo, D. Noja, C. Seifert, “Airy-type evolution equations on star graphs”, Analysis $\$ PDE, 11:7 (2018), 1625–1652 | DOI | MR | Zbl
[15] N.E. Sheils, D.A. Smith, “Heat equation on a network using the Fokas method”, J. Phys. A: Math. Theor., 48 (2015), 335001 | DOI | MR | Zbl
[16] A.S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. A, 453 (1997), 1411–1443 | DOI | MR | Zbl
[17] A. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, University of Cambridge, Cambridge, United Kingdom, 2008 | MR
[18] N.E. Sheils, Multilayer diffusion in a composite medium with imperfect contact, Institute for Mathematics and Its Applications, 21 Dec. 2016, arXiv: 1610.02945v2 [math.NA] | MR
[19] N.E. Sheils, Interface Problems using the Fokas Method, PhD Dissertation, University of Washington, 2015 | MR