Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_3_a7, author = {Nikolai N. Osipov and Maria I. Medvedeva}, title = {An elementary algorithm for solving a diophantine equation of degree four with {Runge's} condition}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {331--341}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/} }
TY - JOUR AU - Nikolai N. Osipov AU - Maria I. Medvedeva TI - An elementary algorithm for solving a diophantine equation of degree four with Runge's condition JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 331 EP - 341 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/ LA - en ID - JSFU_2019_12_3_a7 ER -
%0 Journal Article %A Nikolai N. Osipov %A Maria I. Medvedeva %T An elementary algorithm for solving a diophantine equation of degree four with Runge's condition %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 331-341 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/ %G en %F JSFU_2019_12_3_a7
Nikolai N. Osipov; Maria I. Medvedeva. An elementary algorithm for solving a diophantine equation of degree four with Runge's condition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 331-341. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/
[1] M. Ayad, “Sur le théorème de Runge”, Acta Arith., 58 (1991), 203–209 | DOI | MR | Zbl
[2] L.J. Mordell, Diophantine equations, Academic Press Inc., London, 1969 | MR | Zbl
[3] N.N. Osipov, “The elementary version of Runge's method for cubic equations”, Matematika v Shkole, 1 (2012), 64–69 (in Russian)
[4] N.N. Osipov, “Runge's method for the equations of fourth degree: an elementary approach”, Matematicheskoe Prosveshchenie, Ser. 3, 19, MCCME, M., 2015, 178–198 (in Russian)
[5] N.N. Osipov, B.V. Gulnova, “An algorithmic implementation of Runge's method for cubic diophantine equations”, J. Sib. Fed. Univ. Math. Phys., 11:2 (2018), 137–147 | DOI | MR
[6] D. Poulakis, “A simple method for solving the diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$”, Elem. Math., 54 (1999), 32–36 | DOI | MR | Zbl
[7] C. Runge, “Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen”, J. reine und angew. Math., 100 (1887), 425–435 | MR | Zbl
[8] A. Sankaranarayanan, N. Saradha, “Estimates for the solutions of certain diophantine equations by Runge's method”, Int. J. Number Theory, 4 (2008), 475–493 | DOI | MR | Zbl
[9] V.G. Sprindz̆uk, Classical Diophantine Equations, Springer-Verlag, New York, 1993 | MR | Zbl
[10] Sz. Tengely, “On the Diophantine equation $F(x)=G(y)$”, Acta Arith., 110 (2003), 185–200 | DOI | MR | Zbl
[11] P.G. Walsh, “A quantitative version of Runge's theorem on diophantine equations”, Acta Arith., 62 (1992), 157–172 | DOI | MR | Zbl