An elementary algorithm for solving a diophantine equation of degree four with Runge's condition
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 331-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an elementary algorithm for solving a diophantine equation \begin{equation*} (p(x,y)+a_1x+b_1y)(p(x,y)+a_2x+b_2y)-dp(x,y)-a_3x-b_3y-c=0 \tag{*} \end{equation*} of degree four, where $p(x,y)$ denotes an irreducible quadratic form of positive discriminant and $(a_1,b_1) \neq (a_2,b_2)$. The last condition guarantees that the equation $(*)$ can be solved using the well known Runge's method, but we prefer to avoid the use of any power series that leads to upper bounds for solutions useless for a computer implementation.
Keywords: elementary version of Runge's method.
Mots-clés : diophantine equations
@article{JSFU_2019_12_3_a7,
     author = {Nikolai N. Osipov and Maria I. Medvedeva},
     title = {An elementary algorithm for solving a diophantine equation of degree four with {Runge's} condition},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {331--341},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/}
}
TY  - JOUR
AU  - Nikolai N. Osipov
AU  - Maria I. Medvedeva
TI  - An elementary algorithm for solving a diophantine equation of degree four with Runge's condition
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 331
EP  - 341
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/
LA  - en
ID  - JSFU_2019_12_3_a7
ER  - 
%0 Journal Article
%A Nikolai N. Osipov
%A Maria I. Medvedeva
%T An elementary algorithm for solving a diophantine equation of degree four with Runge's condition
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 331-341
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/
%G en
%F JSFU_2019_12_3_a7
Nikolai N. Osipov; Maria I. Medvedeva. An elementary algorithm for solving a diophantine equation of degree four with Runge's condition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 331-341. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a7/

[1] M. Ayad, “Sur le théorème de Runge”, Acta Arith., 58 (1991), 203–209 | DOI | MR | Zbl

[2] L.J. Mordell, Diophantine equations, Academic Press Inc., London, 1969 | MR | Zbl

[3] N.N. Osipov, “The elementary version of Runge's method for cubic equations”, Matematika v Shkole, 1 (2012), 64–69 (in Russian)

[4] N.N. Osipov, “Runge's method for the equations of fourth degree: an elementary approach”, Matematicheskoe Prosveshchenie, Ser. 3, 19, MCCME, M., 2015, 178–198 (in Russian)

[5] N.N. Osipov, B.V. Gulnova, “An algorithmic implementation of Runge's method for cubic diophantine equations”, J. Sib. Fed. Univ. Math. Phys., 11:2 (2018), 137–147 | DOI | MR

[6] D. Poulakis, “A simple method for solving the diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$”, Elem. Math., 54 (1999), 32–36 | DOI | MR | Zbl

[7] C. Runge, “Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen”, J. reine und angew. Math., 100 (1887), 425–435 | MR | Zbl

[8] A. Sankaranarayanan, N. Saradha, “Estimates for the solutions of certain diophantine equations by Runge's method”, Int. J. Number Theory, 4 (2008), 475–493 | DOI | MR | Zbl

[9] V.G. Sprindz̆uk, Classical Diophantine Equations, Springer-Verlag, New York, 1993 | MR | Zbl

[10] Sz. Tengely, “On the Diophantine equation $F(x)=G(y)$”, Acta Arith., 110 (2003), 185–200 | DOI | MR | Zbl

[11] P.G. Walsh, “A quantitative version of Runge's theorem on diophantine equations”, Acta Arith., 62 (1992), 157–172 | DOI | MR | Zbl