Mots-clés : interface
@article{JSFU_2019_12_3_a4,
author = {Elena N. Lemeshkova},
title = {Two-dimensional plane thermocapillary flow of two immiscible liquids},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {310--316},
year = {2019},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a4/}
}
TY - JOUR AU - Elena N. Lemeshkova TI - Two-dimensional plane thermocapillary flow of two immiscible liquids JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 310 EP - 316 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a4/ LA - en ID - JSFU_2019_12_3_a4 ER -
Elena N. Lemeshkova. Two-dimensional plane thermocapillary flow of two immiscible liquids. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 310-316. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a4/
[1] V.K. Andreev, V.E. Zahvataev, E.A. Ryabitskii, Thermocapillary Instability, Nauka, Sibirskoe otdelenie, Novosibirsk, 2000 (in Russian) | MR
[2] F.E. Torres, E. Helborzheimer, “Temperature gradients and drag effects produced by convection of interfacial internal energy around bubbles”, Phys. Fluids A, 5:3 (1993), 537–549 | DOI | MR | Zbl
[3] K. Hiemenz, “Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Poliytech. J., 326 (1911), 321–440
[4] R.Kh. Zeytounian, “The Benard-Marangoni thermocapillary-instability problem”, Physics-Uspekhi, 41:3 (1998), 241–267 | DOI
[5] V.K. Andreev, “The solutions properties of conjugated nonlinear boundary value problem describing a stationary flow of a two liquids in the channel”, Some actual problems of modern mathematics and mathematical education, Herzen readings, Scientific conference materials, 2018, 18–23
[6] C.A.J. Fletcher, Computational Galerkin method, Springer-Verlag, 1984 | MR
[7] Gabor Szego, Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, Revised ed., American Mathematical Society, Providence, R.I., 1959 | MR | Zbl