A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 285-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

Various physical, ecological, economic, etc phenomena are governed by planar differential systems. Subsequently, several research studies are interested in the study of limit cycles because of their interest in the understanding of these systems. The aim of this paper is to investigate a class of quintic Kolmogorov systems, namely systems of the form \begin{equation*} \begin{array}{c} \overset{.}{x}~=x~P_{4}\left( x,y\right),\\ \overset{.}{y}~=y~Q_{4}\left( x,y\right), \end{array} \end{equation*} where $P_{4}$ and $Q_{4}$ are quartic polynomials. Within this class, our attention is restricted to study the limit cycle in the realistic quadrant $\left \{ (x,y)\in\mathbb{R}^{2};~x>0,~y>0\right \}$. According to the hypothesises, the existence of algebraic or non-algebraic limit cycle is proved. Furthermore, this limit cycle is explicitly given in polar coordinates. Some examples are presented in order to illustrate the applicability of our result.
Keywords: Kolmogorov systems, first integral, periodic orbits, algebraic and non-algebraic limit cycle.
@article{JSFU_2019_12_3_a2,
     author = {Ahmed Bendjeddou and Mohamed Grazem},
     title = {A class of quintic {Kolmogorov} systems with explicit non-algebraic limit cycle},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/}
}
TY  - JOUR
AU  - Ahmed Bendjeddou
AU  - Mohamed Grazem
TI  - A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 285
EP  - 297
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/
LA  - en
ID  - JSFU_2019_12_3_a2
ER  - 
%0 Journal Article
%A Ahmed Bendjeddou
%A Mohamed Grazem
%T A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 285-297
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/
%G en
%F JSFU_2019_12_3_a2
Ahmed Bendjeddou; Mohamed Grazem. A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 285-297. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/

[1] I.T. Al-Dosary Khalil, “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. of Math., 18:2 (2007), 179–189 | DOI | MR | Zbl

[2] A. Bendjeddou, A. Berbache, R. Cheurfa, “A class of Kolmogorov system with exact algebraic limit cycle”, Int. J. of Diff. Equa. Appli., 14:3 (2015), 159–165 | MR | Zbl

[3] A. Bendjeddou, R. Cheurfa, “On the exact limit cycle for some class of planar differential systems”, Nonlinear Diff. Equ. Appl., 14 (2007), 491–498 | DOI | MR | Zbl

[4] A. Bendjeddou, R. Cheurfa, “Cubic and quartic planar differential system with exact algebraic limit cycles”, Elect. J. of Diff. Equ., 2011:15 (2011), 1–12 | MR

[5] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the differential systems with homogenous nonlinearities and a star node”, J. of Diff. Equ., 254 (2013), 3530–3537 | DOI | MR | Zbl

[6] R. Benterki, J. Llibre, “Polynomial differential systems with explicit non-algebraic limit cycles”, Elect. J. of Diff. Equ., 2012:78 (2012), 1–6 | MR

[7] S. Benyoucef, A. Bendjeddou, “A class of Kolmogorov system with exact algebraic limit cycle”, Int. J. of Pure and App. Math., 103:3 (2015), 439–451

[8] S. Benyoucef, A. Bendjeddou, “Kolmogorov system with explicit hyperbolic limit cycle”, J. Sib. Fed. Univ. Math. Phys., 10:2 (2017), 216–222 | DOI | MR

[9] R. Boukoucha, A. Bendjeddou, “A Quintic polynomial diffential systems with explicit non-algebraic limit cycle”, Int. J. of Pure and App. Math., 103:2 (2015), 235–241 | MR

[10] F.H. Busse, “Transition to turbulence via the statistical limit cycle route”, Chaos and Order in Nature, Springer Series in Synergetics, 11, Springer-Verlag, Berlin, 1978, 36–44 | DOI | MR

[11] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A: Math. and Theo., 40:24 (2007), 6329–6348 | DOI | MR | Zbl

[12] F. Dumortier, J. Llibre, J. Artés, Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | MR | Zbl

[13] P. Gao, “Hamiltonian structure and first integrals for the Lotka-Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl

[14] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl

[15] J. Giné, M. Grau, “A note on: “Relaxation Oscillator with Exact Limit Cycles””, J. of Math. Anal. and Appl., 324 (2006), 739–745 | DOI | MR | Zbl

[16] J. Giné, M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations”, Nonlinearity, 19 (2006), 1939–1950 | DOI | MR | Zbl

[17] J. Llibre, T. Salhi, “On the dynamics of a class of Kolmogorov systems”, App. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl

[18] J. Llibre, J. Yu, X. Zhang, “On the limit Cycle of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities”, Inter. of Bifu. and Chaos, 24:5 (2014), 1450065 | DOI | MR | Zbl

[19] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoreal Physics, Gordon and Breach, New York, 1975

[20] N.G. Llyod, J.M. Pearson, “Limit cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR

[21] N.G. Lloyd, J.M. Pearson, E. Sáez, I. Szántó, “A Cubic Kolmogorov System with Six Limit Cycles”, Int. J. Comput. and Math. with Appl., 24 (2002), 445–455 | DOI | MR

[22] R.M. May, Stability and complexity in Model Ecosystems, Princeton, New Jersey, 1974

[23] K. Odani, “The limit cycle of the van der Pol equation is not algebraic”, J. of Diff. Equ., 115 (1995), 146–152 | DOI | MR | Zbl

[24] L. Perko, Differential equations and dynamical systems, Texts in Applied Mathematics, 7, Third edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[25] Xun-Cheng Huang, “Limit cycles in a Kolmogorov-type Model”, Internat. J. Math. and Math Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl

[26] Xun C. Huang, Lemin Zhu, “Limit cycles in a general Kolmogorov model”, Nonlinear Analysis, 60 (2005), 1393–1414 | DOI | MR | Zbl

[27] Y. Yuana, H. Chenc, Ch. Du, Y. Yuan, “The limit cycles of a general Kolmogorov system”, J. Math. Anal. Appl., 392 (2012), 225–237 | DOI | MR