Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_3_a2, author = {Ahmed Bendjeddou and Mohamed Grazem}, title = {A class of quintic {Kolmogorov} systems with explicit non-algebraic limit cycle}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {285--297}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/} }
TY - JOUR AU - Ahmed Bendjeddou AU - Mohamed Grazem TI - A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 285 EP - 297 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/ LA - en ID - JSFU_2019_12_3_a2 ER -
%0 Journal Article %A Ahmed Bendjeddou %A Mohamed Grazem %T A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 285-297 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/ %G en %F JSFU_2019_12_3_a2
Ahmed Bendjeddou; Mohamed Grazem. A class of quintic Kolmogorov systems with explicit non-algebraic limit cycle. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 285-297. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a2/
[1] I.T. Al-Dosary Khalil, “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. of Math., 18:2 (2007), 179–189 | DOI | MR | Zbl
[2] A. Bendjeddou, A. Berbache, R. Cheurfa, “A class of Kolmogorov system with exact algebraic limit cycle”, Int. J. of Diff. Equa. Appli., 14:3 (2015), 159–165 | MR | Zbl
[3] A. Bendjeddou, R. Cheurfa, “On the exact limit cycle for some class of planar differential systems”, Nonlinear Diff. Equ. Appl., 14 (2007), 491–498 | DOI | MR | Zbl
[4] A. Bendjeddou, R. Cheurfa, “Cubic and quartic planar differential system with exact algebraic limit cycles”, Elect. J. of Diff. Equ., 2011:15 (2011), 1–12 | MR
[5] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the differential systems with homogenous nonlinearities and a star node”, J. of Diff. Equ., 254 (2013), 3530–3537 | DOI | MR | Zbl
[6] R. Benterki, J. Llibre, “Polynomial differential systems with explicit non-algebraic limit cycles”, Elect. J. of Diff. Equ., 2012:78 (2012), 1–6 | MR
[7] S. Benyoucef, A. Bendjeddou, “A class of Kolmogorov system with exact algebraic limit cycle”, Int. J. of Pure and App. Math., 103:3 (2015), 439–451
[8] S. Benyoucef, A. Bendjeddou, “Kolmogorov system with explicit hyperbolic limit cycle”, J. Sib. Fed. Univ. Math. Phys., 10:2 (2017), 216–222 | DOI | MR
[9] R. Boukoucha, A. Bendjeddou, “A Quintic polynomial diffential systems with explicit non-algebraic limit cycle”, Int. J. of Pure and App. Math., 103:2 (2015), 235–241 | MR
[10] F.H. Busse, “Transition to turbulence via the statistical limit cycle route”, Chaos and Order in Nature, Springer Series in Synergetics, 11, Springer-Verlag, Berlin, 1978, 36–44 | DOI | MR
[11] L. Cairó, J. Llibre, “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A: Math. and Theo., 40:24 (2007), 6329–6348 | DOI | MR | Zbl
[12] F. Dumortier, J. Llibre, J. Artés, Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | MR | Zbl
[13] P. Gao, “Hamiltonian structure and first integrals for the Lotka-Volterra systems”, Phys. Lett. A, 273 (2000), 85–96 | DOI | MR | Zbl
[14] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl
[15] J. Giné, M. Grau, “A note on: “Relaxation Oscillator with Exact Limit Cycles””, J. of Math. Anal. and Appl., 324 (2006), 739–745 | DOI | MR | Zbl
[16] J. Giné, M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations”, Nonlinearity, 19 (2006), 1939–1950 | DOI | MR | Zbl
[17] J. Llibre, T. Salhi, “On the dynamics of a class of Kolmogorov systems”, App. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl
[18] J. Llibre, J. Yu, X. Zhang, “On the limit Cycle of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities”, Inter. of Bifu. and Chaos, 24:5 (2014), 1450065 | DOI | MR | Zbl
[19] G. Lavel, R. Pellat, “Plasma Physics”, Proceedings of Summer School of Theoreal Physics, Gordon and Breach, New York, 1975
[20] N.G. Llyod, J.M. Pearson, “Limit cycles of a Cubic Kolmogorov System”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR
[21] N.G. Lloyd, J.M. Pearson, E. Sáez, I. Szántó, “A Cubic Kolmogorov System with Six Limit Cycles”, Int. J. Comput. and Math. with Appl., 24 (2002), 445–455 | DOI | MR
[22] R.M. May, Stability and complexity in Model Ecosystems, Princeton, New Jersey, 1974
[23] K. Odani, “The limit cycle of the van der Pol equation is not algebraic”, J. of Diff. Equ., 115 (1995), 146–152 | DOI | MR | Zbl
[24] L. Perko, Differential equations and dynamical systems, Texts in Applied Mathematics, 7, Third edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[25] Xun-Cheng Huang, “Limit cycles in a Kolmogorov-type Model”, Internat. J. Math. and Math Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl
[26] Xun C. Huang, Lemin Zhu, “Limit cycles in a general Kolmogorov model”, Nonlinear Analysis, 60 (2005), 1393–1414 | DOI | MR | Zbl
[27] Y. Yuana, H. Chenc, Ch. Du, Y. Yuan, “The limit cycles of a general Kolmogorov system”, J. Math. Anal. Appl., 392 (2012), 225–237 | DOI | MR