Heterogeneous system MMPP/GI(2)/$\infty$ with random customers capacities
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 231-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

A heterogeneous queuing system with an infinite number of servers is considered in this paper. Customers arrive in the system according to a Markov Modulated Poisson Process. The type of incoming customer is defined as $i$-type with probability $p_i \, (i = 1,2)$. Each customer carries a random quantity of work (capacity of the customer). In this study service time does not depend on the customers capacities. It is shown that the joint probability distribution of the customers number and total capacities in the system is multidimensional Gaussian distribution under the asymptotic condition of an infinitely growing service time. Simulation results allow us to determine an applicability area of the asymptotic result.
Keywords: infinite-server queueing system, random capacity of customers, Markov Modulated Poisson Process.
@article{JSFU_2019_12_2_a9,
     author = {Ekaterina V. Pankratova and Svetlana P. Moiseeva and Mais P. Farhadov and Alexandr N. Moiseev},
     title = {Heterogeneous system {MMPP/GI(2)/}$\infty$ with random customers capacities},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a9/}
}
TY  - JOUR
AU  - Ekaterina V. Pankratova
AU  - Svetlana P. Moiseeva
AU  - Mais P. Farhadov
AU  - Alexandr N. Moiseev
TI  - Heterogeneous system MMPP/GI(2)/$\infty$ with random customers capacities
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 231
EP  - 239
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a9/
LA  - en
ID  - JSFU_2019_12_2_a9
ER  - 
%0 Journal Article
%A Ekaterina V. Pankratova
%A Svetlana P. Moiseeva
%A Mais P. Farhadov
%A Alexandr N. Moiseev
%T Heterogeneous system MMPP/GI(2)/$\infty$ with random customers capacities
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 231-239
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a9/
%G en
%F JSFU_2019_12_2_a9
Ekaterina V. Pankratova; Svetlana P. Moiseeva; Mais P. Farhadov; Alexandr N. Moiseev. Heterogeneous system MMPP/GI(2)/$\infty$ with random customers capacities. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a9/

[1] C.A. Knessl, “On the Sojourn Time Distribution in a Finite Capacity Processor Shared Queue”, J. ACM, 40:5 (1993), 1238–1301 | DOI | MR | Zbl

[2] E. Lisovskaya, S. Moiseeva, M. Pagano, V. Potatueva, “Study of the MMPP/GI/$\infty$ Queueing System with Random Customers' Capacities”, Informatics and Applications, 11:4 (2017), 111–119

[3] A. Moiseev, A. Demin, V. Dorofeev, V. Sorokin, “Discrete-event approach to simulation of queueing networks”, Key Engineering Materials, 685 (2016), 939–942 | DOI

[4] A. Moiseev, S. Moiseeva, E. Lisovskaya, “Infinite-server queueing tandem with MMPP arrivals and random capacity of customers”, Proc. 31st European Conference on Modelling and Simulation ECMS, 2017, 673–679

[5] A.N. Moiseev, A.A. Nazarov, “Asymptotic Analysis of a Multistage Queuing System with a High-rate Renewal Arrival Process”, Optoelectronics, Instrumentation and Data Processing, 50:2 (2014), 163–171 | DOI

[6] A. Moiseev, A. Nazarov, “Queueing Network $MAP-(GI-\infty)^K$ with High-rate Arrivals”, European Journal of Operational Research, 254 (2016), 161–168 | DOI | MR | Zbl

[7] V.A. Naumov, K.E. Samouylov, A.K. Samouylov, “Total Amount of Resources Occupied by Serviced Customers”, Autom. Remote Control, 77:8 (2016), 1419–1427 | DOI | MR | Zbl

[8] V. Naumov, K. Samouylov, E. Sopin, S. Andreev, “Two approaches to analysis of queuing systems with limited resources”, Ultra-Modern Telecommunications and Control Systems and Workshops Proceedings, IEEE, 2014, 485–488

[9] E. Pankratova, S. Moiseeva, “Queueing System GI/GI/$\infty$ with $n$ Types of Customers”, Communications in Computer and Information Science, 564 (2015), 216–225 | DOI

[10] E. Pankratova, S. Moiseeva, “Queueing System MAP/M//$\infty$ with $n$ Types of Customers”, Communications in Computer and Information Science, 487 (2014), 356–366 | DOI | Zbl

[11] E. Pankratova, S. Moiseeva, “Queueing System with Renewal Arrival Process and Two Types of Customers”, Proc. of the 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshop, IEEE, 2015, 514–517

[12] O.M. Tikhonenko, W. Kempa, “Queuing Systems with Processor Sharing and Limited Memory under Control of the AQM Mechanism”, Autom. Remote Control, 76:10 (2015), 1784–1796 | DOI | MR | Zbl

[13] O.M. Tikhonenko, W. Kempa, “The Generalization of AQM Algorithms for Queuing Systems with Bounded Capacity”, Lect. Notes Comput. Sci., 7204, 2012, 242–251 | DOI

[14] O.M. Tikhonenko, Queuing models in information processing systems, Universitetskoe, Minsk, 1990 (in Russian) | MR

[15] O.M. Tikhonenko, W. Kempa, “Queue-size Distribution in M/G/1-type System with Bounded Capacity and Packet Dropping”, Communications in Computer and Information Science, 356 (2013), 177–186 | DOI | MR