Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_2_a2, author = {Louiza Derbal and Zakia Kebbiche}, title = {Theoretical and numerical result for linear optimization problem based on a new kernel function}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {160--172}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a2/} }
TY - JOUR AU - Louiza Derbal AU - Zakia Kebbiche TI - Theoretical and numerical result for linear optimization problem based on a new kernel function JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 160 EP - 172 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a2/ LA - en ID - JSFU_2019_12_2_a2 ER -
%0 Journal Article %A Louiza Derbal %A Zakia Kebbiche %T Theoretical and numerical result for linear optimization problem based on a new kernel function %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 160-172 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a2/ %G en %F JSFU_2019_12_2_a2
Louiza Derbal; Zakia Kebbiche. Theoretical and numerical result for linear optimization problem based on a new kernel function. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 160-172. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a2/
[1] M. Achache, “A new parameterized kernel function for LO yielding the best known iteration bound for a large-update interior point algorithm”, Afrika Matematika, 27:3–4 (2016), 591–601 | DOI | MR | Zbl
[2] Y.Q. Bai, M. El Ghami, C. Roos, “A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization”, SIAM Journal on Optimization, 15:1 (2004), 101–128 | DOI | MR | Zbl
[3] D. Den Hertog, “Interior point approach to linear, quadratic, and convex programming”, Mathematics and its Applications, 277, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl
[4] M. Bouafia, D. Benterki, A. Yassine, “An efficient parameterized logarithmic kernel function for linear optimization”, Optimization Letters, 2018 | MR | Zbl
[5] N.K. Karmarkar, “A new polynomial-time algorithm for linear programming”, Proceedings of the 16th Annual ACM Symposium on Theory of Computing, 1984, 302–311 | MR
[6] A. Keraghel, Etude adaptative et comparative des principales variantes dans l'algorithme de karmarkar, Thèse de Doctorat, Université de Joseph Fourier Grenoble I, France, 1989
[7] B. Kheirfam, M. Haghighi, “A full-Newton step infeasible interior-point method for linear optimization based on a trigonometric kernel function”, Journal of Mathematical Programming and Operations Research, 65:4 (2016), 841–857 | MR | Zbl
[8] J. Peng, C. Roos, T. Terlaky, Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms, Princeton University Press, 2002 | MR | Zbl
[9] Z.G. Qian, Y.Q. Bay, “Primal-dual Interior-Point Algorithms with Dynamic Step SizeBased on kernel functions for linear Programming”, Journal of Shanghai University, 9:5 (2005), 391–396 | DOI | MR | Zbl
[10] C. Roos, T. Terlaky, J.-Ph.Vial, Theory and Algorithms for Linear Optimization, An Interior-Point Approach, John Wiley Sons, Chichester, UK, 1997 | MR
[11] G. Sonnevend, “An “analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming”, System Modelling and Optimization, Proceedings of 12th IFIP-Conference (Budapest, Hungary, 1985), Lecture Notes in Control and Inform. Sci., 84, eds. Prekopa A, J., Szelezsan B., Springer, Berlin, 1986, 866–876 | DOI | MR
[12] R.J. Vanderbei, Linear Programming, Foundations and Extensions, International Series in Operations Research and Management Science, 7, 2nd ed. | MR
[13] Y. Ye, Interior Point Algorithms, Theory and Analysis, John Wiley and Sons, Chichester, UK, 1997 | MR | Zbl