Mots-clés : limit cycles, Liénard differential systems.
@article{JSFU_2019_12_2_a1,
author = {Ahmed Bendjeddou and Aziza Berbache and Abdelkrim Kina},
title = {Limit cycles for a class of polynomial differential systems via averaging theory},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {145--159},
year = {2019},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/}
}
TY - JOUR AU - Ahmed Bendjeddou AU - Aziza Berbache AU - Abdelkrim Kina TI - Limit cycles for a class of polynomial differential systems via averaging theory JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 145 EP - 159 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/ LA - en ID - JSFU_2019_12_2_a1 ER -
%0 Journal Article %A Ahmed Bendjeddou %A Aziza Berbache %A Abdelkrim Kina %T Limit cycles for a class of polynomial differential systems via averaging theory %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 145-159 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/ %G en %F JSFU_2019_12_2_a1
Ahmed Bendjeddou; Aziza Berbache; Abdelkrim Kina. Limit cycles for a class of polynomial differential systems via averaging theory. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 145-159. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/
[1] J. Alavez-Ramirez, G. Blé, J. Llibre, J. Lopez-Lopez, “On the maximum number of limit cycles of a class of generalized Liénard differential systems”, Int. J. Bifurcation and Chaos, 22 (2012), 1250063 | DOI | MR | Zbl
[2] T.R. Blows, N.G. Lloyd, “The number of small-amplitude limit cycles of Liénard equations”, Math. Proc. Camb. Phil. Soc., 95 (1984), 359–366 | DOI | MR | Zbl
[3] A. Buica, J. Llibre, “Averaging methods for finding periodic orbits via Brouwer degree”, Bull. Sci. Math., 128 (2004), 7–22 | DOI | MR | Zbl
[4] X. Chen, J. Llibre, Z. Zhang, “Sufficient conditions for the existence of at least $n$ or exactly $n$ limit cycles for the Lienard differential systems”, J. Differential Equations, 242 (2007), 11–23 | DOI | MR | Zbl
[5] C.J. Christopher, S. Lynch, “Small-amplitude limti cycle bifurcations for Liénard systems with quadratic or cubic dapimg or restoring forces”, Nonlinearity, 12 (1999), 1099–1112 | DOI | MR | Zbl
[6] W.A. Coppel, “Some quadratic systems with at most one limit cycles”, Dynamics Reported, v. 2, Wiley, New York, 1998, 61–68 | MR
[7] B. Garca, J. Llibre, J.S. Pérez del Rio, “Limit cycles of generalized Liénard polynomial differential systems via averaging theory”, Chaos Solitons Fractals, 62–63 (2014), 1–9 | DOI | MR
[8] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 1979 | MR
[9] M. Han, P. Yu, Normal forms, Melnikov functions and bifurctions of limit cycles, Applied Mathematical Sciences, 181, Springer, London, 2012 | DOI | MR
[10] J. Li, “Hilbert's 16th problem and bifurcations of planar polynomial vector fields”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:1 (2003), 47–106 | DOI | MR | Zbl
[11] J. Llibre, A.C. Mereu, M.A. Teixeira, “Limit cycles of generalized polynomial Liénard differential equations”, Math. Proc. Camb. Phil. Soc., 2009, 000, 1 pp. | MR
[12] J. Llibre, C. Valls, “On the number of limit cycles of a class of polynomial differential systems”, Proc. A: R. Soc., 468 (2012), 2347–2360 | DOI | MR | Zbl
[13] J. Llibre, C. Valls, “Limit cycles for a generalization of Liénard polynomial differential systems”, Chaos, Solitons and Fractals, 46 (2013), 65–74 | DOI | MR | Zbl
[14] J. Llibre, C. Valls, “On the number of limit cycles for a generalization of Liénard polynomial differential systems”, Int. J. Bifurcation and Chaos, 23 (2013), 1350048 | DOI | MR | Zbl