Limit cycles for a class of polynomial differential systems via averaging theory
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 145-159

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the limit cycles of a class of polynomial differential systems of the form \begin{equation*} \left\{ \begin{array}{l} \dot{x}=y-\varepsilon (g_{11}\left( x\right) y^{2\alpha +1}+f_{11}\left( x\right) y^{2\alpha })-\varepsilon ^{2}(g_{12}\left( x\right) y^{2\alpha +1}+f_{12}\left( x\right) y^{2\alpha }) ,\\ \dot{y}=-x-\varepsilon (g_{21}\left( x\right) y^{2\alpha +1}+f_{21}\left( x\right) y^{2\alpha })-\varepsilon ^{2}(g_{22}\left( x\right) y^{2\alpha +1}+f_{22}\left( x\right) y^{2\alpha }), \end{array} \right. \end{equation*} where $m,n,k,l$ and $\alpha $ are positive integers, $g_{1\kappa }$, $ g_{2\kappa },f_{1\kappa }$ and $f_{2\kappa }$ have degree $n,m,l$ and $k$, respectively for each $\kappa =1,2$, and $\varepsilon $ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=y,\, \dot{y}=-x$ using the averaging theory of first and second order.
Keywords: averaging theory, Liénard differential systems.
Mots-clés : limit cycles
@article{JSFU_2019_12_2_a1,
     author = {Ahmed Bendjeddou and Aziza Berbache and Abdelkrim Kina},
     title = {Limit cycles for a class of polynomial differential systems via averaging theory},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {145--159},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/}
}
TY  - JOUR
AU  - Ahmed Bendjeddou
AU  - Aziza Berbache
AU  - Abdelkrim Kina
TI  - Limit cycles for a class of polynomial differential systems via averaging theory
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 145
EP  - 159
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/
LA  - en
ID  - JSFU_2019_12_2_a1
ER  - 
%0 Journal Article
%A Ahmed Bendjeddou
%A Aziza Berbache
%A Abdelkrim Kina
%T Limit cycles for a class of polynomial differential systems via averaging theory
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 145-159
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/
%G en
%F JSFU_2019_12_2_a1
Ahmed Bendjeddou; Aziza Berbache; Abdelkrim Kina. Limit cycles for a class of polynomial differential systems via averaging theory. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 2, pp. 145-159. http://geodesic.mathdoc.fr/item/JSFU_2019_12_2_a1/