On application of slowly varying functions with remainder in the theory of Galton--Watson branching process
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Galton–Watson branching processes. Consider the critical case so that the generating function of the per-capita offspring distribution has the infinite second moment, but its tail is regularly varying with remainder. We improve the Basic Lemma of the theory of critical Galton-Watson branching processes and refine some well-known limit results.
Keywords:
Galton–Watson branching process, slowly varying functions, generating functions.
@article{JSFU_2019_12_1_a3,
author = {Azam A. Imomov and Erkin E. Tukhtaev},
title = {On application of slowly varying functions with remainder in the theory of {Galton--Watson} branching process},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {51--57},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/}
}
TY - JOUR AU - Azam A. Imomov AU - Erkin E. Tukhtaev TI - On application of slowly varying functions with remainder in the theory of Galton--Watson branching process JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 51 EP - 57 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/ LA - en ID - JSFU_2019_12_1_a3 ER -
%0 Journal Article %A Azam A. Imomov %A Erkin E. Tukhtaev %T On application of slowly varying functions with remainder in the theory of Galton--Watson branching process %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 51-57 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/ %G en %F JSFU_2019_12_1_a3
Azam A. Imomov; Erkin E. Tukhtaev. On application of slowly varying functions with remainder in the theory of Galton--Watson branching process. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/