Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_1_a3, author = {Azam A. Imomov and Erkin E. Tukhtaev}, title = {On application of slowly varying functions with remainder in the theory of {Galton--Watson} branching process}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {51--57}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/} }
TY - JOUR AU - Azam A. Imomov AU - Erkin E. Tukhtaev TI - On application of slowly varying functions with remainder in the theory of Galton--Watson branching process JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 51 EP - 57 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/ LA - en ID - JSFU_2019_12_1_a3 ER -
%0 Journal Article %A Azam A. Imomov %A Erkin E. Tukhtaev %T On application of slowly varying functions with remainder in the theory of Galton--Watson branching process %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 51-57 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/ %G en %F JSFU_2019_12_1_a3
Azam A. Imomov; Erkin E. Tukhtaev. On application of slowly varying functions with remainder in the theory of Galton--Watson branching process. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/
[1] S. Asmussen, H. Hering, Branching processes, Birkhäuser, Boston, 1983 | MR | Zbl
[2] K.B. Athreya, P.E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl
[3] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Univ. Press, Cambridge, 1987 | MR | Zbl
[4] G.M. Fihtengols, Cours of differential and integral calculus, v. 2, Nauka, M., 1970 (in Russian)
[5] T.E. Harris, The theory of branching processes, Springer-Verlag, Berlin, 1963 | MR | Zbl
[6] A.A. Imomov, “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Probability and mathematical statistics, 2018 (to appear)
[7] J. Karamata, “Sur un mode de croissance reguliere. Theoremes fondamenteaux”, Bull. Soc. Math. France, 61 (1933), 55–62 | DOI | MR
[8] J. Karamata, “Sur un mode de croissance réguliére des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl
[9] E. Seneta, “Regularly varying functions in the theory of simple branching process”, Adv. Appl. Prob., 6 (1974), 408–420 | DOI | MR | Zbl
[10] E. Seneta, “A Tauberian Theorem of E. Landau and W. Feller”, Ann. Prob., 1 (1973), 1057–1058 | DOI | MR | Zbl
[11] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1972 | MR
[12] E. Seneta, “On invariant measures for simple branching process”, Jour. Appl. Prob., 8:1 (1971), 43–51 | DOI | MR | Zbl
[13] R.S. Slack, “Further notes on branching processes with mean 1”, Wahrscheinlichkeitstheor. und Verv. Geb., 25 (1972), 31–38 | DOI | MR | Zbl
[14] R.S. Slack, “A branching process with mean one and possible infinite variance”, Wahrscheinlichkeitstheor. und Verv. Geb., 9 (1968), 139–145 | DOI | MR | Zbl
[15] V.M. Zolotarev, “More exact statements of several theorems in the theory of branching processes”, Theory Prob. and Appl., 2 (1957), 245–253 | DOI | MR