On application of slowly varying functions with remainder in the theory of Galton–Watson branching process
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Galton–Watson branching processes. Consider the critical case so that the generating function of the per-capita offspring distribution has the infinite second moment, but its tail is regularly varying with remainder. We improve the Basic Lemma of the theory of critical Galton-Watson branching processes and refine some well-known limit results.
Keywords: Galton–Watson branching process, slowly varying functions, generating functions.
@article{JSFU_2019_12_1_a3,
     author = {Azam A. Imomov and Erkin E. Tukhtaev},
     title = {On application of slowly varying functions with remainder in the theory of {Galton{\textendash}Watson} branching process},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {51--57},
     year = {2019},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/}
}
TY  - JOUR
AU  - Azam A. Imomov
AU  - Erkin E. Tukhtaev
TI  - On application of slowly varying functions with remainder in the theory of Galton–Watson branching process
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 51
EP  - 57
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/
LA  - en
ID  - JSFU_2019_12_1_a3
ER  - 
%0 Journal Article
%A Azam A. Imomov
%A Erkin E. Tukhtaev
%T On application of slowly varying functions with remainder in the theory of Galton–Watson branching process
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 51-57
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/
%G en
%F JSFU_2019_12_1_a3
Azam A. Imomov; Erkin E. Tukhtaev. On application of slowly varying functions with remainder in the theory of Galton–Watson branching process. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/

[1] S. Asmussen, H. Hering, Branching processes, Birkhäuser, Boston, 1983 | MR | Zbl

[2] K.B. Athreya, P.E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl

[3] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Univ. Press, Cambridge, 1987 | MR | Zbl

[4] G.M. Fihtengols, Cours of differential and integral calculus, v. 2, Nauka, M., 1970 (in Russian)

[5] T.E. Harris, The theory of branching processes, Springer-Verlag, Berlin, 1963 | MR | Zbl

[6] A.A. Imomov, “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Probability and mathematical statistics, 2018 (to appear)

[7] J. Karamata, “Sur un mode de croissance reguliere. Theoremes fondamenteaux”, Bull. Soc. Math. France, 61 (1933), 55–62 | DOI | MR

[8] J. Karamata, “Sur un mode de croissance réguliére des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl

[9] E. Seneta, “Regularly varying functions in the theory of simple branching process”, Adv. Appl. Prob., 6 (1974), 408–420 | DOI | MR | Zbl

[10] E. Seneta, “A Tauberian Theorem of E. Landau and W. Feller”, Ann. Prob., 1 (1973), 1057–1058 | DOI | MR | Zbl

[11] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1972 | MR

[12] E. Seneta, “On invariant measures for simple branching process”, Jour. Appl. Prob., 8:1 (1971), 43–51 | DOI | MR | Zbl

[13] R.S. Slack, “Further notes on branching processes with mean 1”, Wahrscheinlichkeitstheor. und Verv. Geb., 25 (1972), 31–38 | DOI | MR | Zbl

[14] R.S. Slack, “A branching process with mean one and possible infinite variance”, Wahrscheinlichkeitstheor. und Verv. Geb., 9 (1968), 139–145 | DOI | MR | Zbl

[15] V.M. Zolotarev, “More exact statements of several theorems in the theory of branching processes”, Theory Prob. and Appl., 2 (1957), 245–253 | DOI | MR