On application of slowly varying functions with remainder in the theory of Galton--Watson branching process
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Galton–Watson branching processes. Consider the critical case so that the generating function of the per-capita offspring distribution has the infinite second moment, but its tail is regularly varying with remainder. We improve the Basic Lemma of the theory of critical Galton-Watson branching processes and refine some well-known limit results.
Keywords: Galton–Watson branching process, slowly varying functions, generating functions.
@article{JSFU_2019_12_1_a3,
     author = {Azam A. Imomov and Erkin E. Tukhtaev},
     title = {On application of slowly varying functions with remainder in the theory of {Galton--Watson} branching process},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {51--57},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/}
}
TY  - JOUR
AU  - Azam A. Imomov
AU  - Erkin E. Tukhtaev
TI  - On application of slowly varying functions with remainder in the theory of Galton--Watson branching process
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 51
EP  - 57
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/
LA  - en
ID  - JSFU_2019_12_1_a3
ER  - 
%0 Journal Article
%A Azam A. Imomov
%A Erkin E. Tukhtaev
%T On application of slowly varying functions with remainder in the theory of Galton--Watson branching process
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 51-57
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/
%G en
%F JSFU_2019_12_1_a3
Azam A. Imomov; Erkin E. Tukhtaev. On application of slowly varying functions with remainder in the theory of Galton--Watson branching process. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 51-57. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a3/

[1] S. Asmussen, H. Hering, Branching processes, Birkhäuser, Boston, 1983 | MR | Zbl

[2] K.B. Athreya, P.E. Ney, Branching processes, Springer, New York, 1972 | MR | Zbl

[3] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Univ. Press, Cambridge, 1987 | MR | Zbl

[4] G.M. Fihtengols, Cours of differential and integral calculus, v. 2, Nauka, M., 1970 (in Russian)

[5] T.E. Harris, The theory of branching processes, Springer-Verlag, Berlin, 1963 | MR | Zbl

[6] A.A. Imomov, “On a limit structure of the Galton-Watson branching processes with regularly varying generating functions”, Probability and mathematical statistics, 2018 (to appear)

[7] J. Karamata, “Sur un mode de croissance reguliere. Theoremes fondamenteaux”, Bull. Soc. Math. France, 61 (1933), 55–62 | DOI | MR

[8] J. Karamata, “Sur un mode de croissance réguliére des fonctions”, Mathematica (Cluj), 4 (1930), 38–53 | Zbl

[9] E. Seneta, “Regularly varying functions in the theory of simple branching process”, Adv. Appl. Prob., 6 (1974), 408–420 | DOI | MR | Zbl

[10] E. Seneta, “A Tauberian Theorem of E. Landau and W. Feller”, Ann. Prob., 1 (1973), 1057–1058 | DOI | MR | Zbl

[11] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1972 | MR

[12] E. Seneta, “On invariant measures for simple branching process”, Jour. Appl. Prob., 8:1 (1971), 43–51 | DOI | MR | Zbl

[13] R.S. Slack, “Further notes on branching processes with mean 1”, Wahrscheinlichkeitstheor. und Verv. Geb., 25 (1972), 31–38 | DOI | MR | Zbl

[14] R.S. Slack, “A branching process with mean one and possible infinite variance”, Wahrscheinlichkeitstheor. und Verv. Geb., 9 (1968), 139–145 | DOI | MR | Zbl

[15] V.M. Zolotarev, “More exact statements of several theorems in the theory of branching processes”, Theory Prob. and Appl., 2 (1957), 245–253 | DOI | MR