Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_1_a2, author = {Hacene Gharout and Nourredine Akroune and Abelkadous Taha and Daniele-Fournier Prunaret}, title = {Chaotic dynamics of a three-dimensional endomorphism}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {36--50}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a2/} }
TY - JOUR AU - Hacene Gharout AU - Nourredine Akroune AU - Abelkadous Taha AU - Daniele-Fournier Prunaret TI - Chaotic dynamics of a three-dimensional endomorphism JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 36 EP - 50 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a2/ LA - en ID - JSFU_2019_12_1_a2 ER -
%0 Journal Article %A Hacene Gharout %A Nourredine Akroune %A Abelkadous Taha %A Daniele-Fournier Prunaret %T Chaotic dynamics of a three-dimensional endomorphism %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 36-50 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a2/ %G en %F JSFU_2019_12_1_a2
Hacene Gharout; Nourredine Akroune; Abelkadous Taha; Daniele-Fournier Prunaret. Chaotic dynamics of a three-dimensional endomorphism. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 36-50. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a2/
[1] I. Gumowski, C. Mira, Dynamique chaotique Transformatios ponctuelles Transition Ordre-Désordre, Cepadues Editions, Toulouse, 1980 | MR
[2] C. Mira, Chaotic Dynamics: From the One-dimensional Endomorphism to the Two-Dimensional Diffeomorphism, World Scientific Publishing, Singapore, 1987 | MR | Zbl
[3] C.E. Frouzakis, L. Gardini, I.G. Kevrekidis, G. Millerioux, C. Mira, “On some proporties of invariant sets of two-dimensional noninvertible maps”, International Journal of Bifurcation and Chaos, 7:7 (1997), 1167–1194 | DOI | MR | Zbl
[4] C. Mira, A. Agliari, L. Gardini, “From the box-within-a-box bifurcation structure to the julia set. Part II: Bifurcation routes to different julia sets from an indirect embedding of a quadratic complex map”, International Journal of Bifurcation and Chaos, 19:10 (2009), 3235–3282 | DOI | MR | Zbl
[5] G. Millerioux, C. Mira, “Noninvertible piecewise linear maps applied to chaos synchronization and secure communications”, International Journal of Bifurcation and Chaos, 7:7 (1997), 1617–1634 | DOI | MR | Zbl
[6] E. Mosekilde, Y. Maistrenko, D. Postnov, Chaotic Synchronization: Applications to living systems, World Scientific Series on Nonlinear science, Series A, 42, Singapore, 2001 | MR
[7] J. Xu, D. Fournier-Prunaret, A.K. Taha, P. Chargé, “Chaos generator for secure transmission using a sine map and a RLC series circuit”, Science China, 1:53 (2010), 129–136
[8] J.C. Sprott, “Simplest dissipative chaotic flow”, Physics Letters A, 228 (1997), 271–274 | DOI | MR | Zbl
[9] G.M. Zaslavsky, Chaos in Dynamic Systems, Harwood, Amsterdam, 1985 | MR
[10] G.I. Bischi, L. Mroz, H. Hauser, “Studying basin bifurcations in nonlinear triopoly games by using 3D visualization”, Nonlinear Analysis, Theory, Methods $\$ Applications, 47:8 (2001), 5325–5341 | DOI | MR | Zbl
[11] C. Mira, L. Gardini, A. Barugola, J.C. Cathala, Chaotic dynamics in two-dimensional noninvertible maps, World Scientific Publishing, Singapore, 1996 | MR | Zbl
[12] H.E. Nusse, J.A. Yorke, Dynamics: Numerical Explorations, Springer-Verlag, New York, 1998 | MR | Zbl