The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 112-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux are considered in the paper. The critical global existence curve and the critical Fujita curve are obtained.
Keywords: doubly nonlinear parabolic equation in non-divergence form, critical Fujita curve, critical global existence curve.
@article{JSFU_2019_12_1_a11,
     author = {Mersaid M. Aripov and Jakhongir R. Raimbekov},
     title = {The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a11/}
}
TY  - JOUR
AU  - Mersaid M. Aripov
AU  - Jakhongir R. Raimbekov
TI  - The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 112
EP  - 124
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a11/
LA  - en
ID  - JSFU_2019_12_1_a11
ER  - 
%0 Journal Article
%A Mersaid M. Aripov
%A Jakhongir R. Raimbekov
%T The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 112-124
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a11/
%G en
%F JSFU_2019_12_1_a11
Mersaid M. Aripov; Jakhongir R. Raimbekov. The critical curves of a doubly nonlinear parabolic equation in non-divergent form with a source and nonlinear boundary flux. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a11/

[1] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations, de Gruyter Expositions in Mathematics, 1995 | MR | Zbl

[2] J. Muller, C. Kuttler, Methods and models in mathematical biology. Deterministic and stochastic approaches, Springer, Berlin, 2015 | MR | Zbl

[3] C.V. Pao, Nonlinear Parabolic and Elliptic Equation, Plenum, New York, 1992 | MR

[4] P. Li.Zhongping, L. Mu.Chunlai, Li Xie, “Critical curves for a degenerate parabolic equation with multiple nonlinearities”, J. Math. Anal. Appl., 359 (2009), 39–47 | DOI | MR | Zbl

[5] M. Aripov, S.A. Sadullaeva, “To properties of solutions to reaction-diffusion equation with double nonlinearity with distributed parameters”, J. Sib. Fed. Univ. Math. Phys., 6:2 (2013), 157–167

[6] Z.R. Rakhmonov, A.I. Tillaev, “On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities”, NANOSYSTEMS: physics, chemistry, mathematics, 9:3 (2018), 323–329 | DOI

[7] Z.R. Rakhmonov, “On the Properties of Solutions of Multidimensional Nonlinear Filtration Problem with Variable Density and Nonlocal Boundary Condition in the Case of Fast Diffusion”, Journal of Siberian Federal University. Mathematics $\$ Physics, 9:2 (2016), 225–234 | DOI

[8] V.A. Galaktionov, J.L. Vazquez, “The problem of blow-up in nonlinear parabolic equations”, Discrete and continuous dynamical systems, 8:2 (2002), 399–433 | DOI | MR | Zbl

[9] X. Song, S. Zheng, “Blow-up and blow-up rate for a reaction-diffusion model with multiple nonlinearities”, Nonlinear Anal., 54 (2003), 279–289 | DOI | MR | Zbl

[10] Z. Li, Ch. Mu, “Critical exponents for a fast diffusive polytrophic filtration equation with nonlinear boundary flux”, J. Math. Anal. Appl., 346 (2008), 55–64 | DOI | MR | Zbl

[11] Zhongping Li, Chunlai Mu, Li Xie, “Critical curves for a degenerate parabolic equation with multiple nonlinearities”, J. Math. Anal. Appl., 359 (2009), 39–47 | DOI | MR | Zbl

[12] Z. Wang, J. Yin, Ch.Wang, “Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition”, Appl. Math. Lett., 20 (2007), 142–147 | DOI | MR | Zbl

[13] J.R. Raimbekov, “The properties of the solutions for Cauchy problem of nonlinear parabolic equations in non-divergent form with density”, J. Sib. Fed. Univ. Math. Phys., 8:2 (2015), 192–200 | DOI | MR

[14] C. Jin, J. Yin, “Critical exponent of a doubly degenerate parabolic equation in non-divergence form with nonlinear source”, Chin. Ann. Math., Ser. A, 30 (2009), 525–538 | MR | Zbl

[15] C. Jin, J. Yin, “Self-similar solutions for a class of non-divergence form equations”, Nonlinear Differ. Equ. Appl. Nodea, 20:3 (2013), 873–893 | DOI | MR | Zbl

[16] C. Wang, J. Yin, “Shrinking self-similar solutions of a nonlinear diffusion equation with nondivergence form”, J. Math. Anal. Appl., 289 (2004), 387–404 | DOI | MR | Zbl

[17] W. Zhou, Z. Yao, “Cauchy problem for a degenerate parabolic equation with non-divergence form”, Acta. Mathematica Scienta, 30B:5 (2010), 1679–1686 | MR | Zbl

[18] W. Zhou, Z. Wu, “Some results on a class of degenerate parabolic equations not in divergence form”, Nonlinear Analysis: Theory, Methods Applications, 60:5 (2005), 863–886 | DOI | MR | Zbl