Navier--Stokes equations for elliptic complexes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 3-27

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue our study of invariant forms of the classical equations of mathematical physics, such as the Maxwell equations or the Lamé system, on manifold with boundary. To this end we interpret them in terms of the de Rham complex at a certain step. On using the structure of the complex we get an insight to predict a degeneracy deeply encoded in the equations. In the present paper we develop an invariant approach to the classical Navier–Stokes equations.
Keywords: Navier–Stokes equations, classical solution.
@article{JSFU_2019_12_1_a0,
     author = {Azal Mera and Alexander A. Shlapunov and Nikolai Tarkhanov},
     title = {Navier--Stokes equations for elliptic complexes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/}
}
TY  - JOUR
AU  - Azal Mera
AU  - Alexander A. Shlapunov
AU  - Nikolai Tarkhanov
TI  - Navier--Stokes equations for elliptic complexes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 3
EP  - 27
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/
LA  - en
ID  - JSFU_2019_12_1_a0
ER  - 
%0 Journal Article
%A Azal Mera
%A Alexander A. Shlapunov
%A Nikolai Tarkhanov
%T Navier--Stokes equations for elliptic complexes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 3-27
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/
%G en
%F JSFU_2019_12_1_a0
Azal Mera; Alexander A. Shlapunov; Nikolai Tarkhanov. Navier--Stokes equations for elliptic complexes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/