Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_1_a0, author = {Azal Mera and Alexander A. Shlapunov and Nikolai Tarkhanov}, title = {Navier--Stokes equations for elliptic complexes}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {3--27}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/} }
TY - JOUR AU - Azal Mera AU - Alexander A. Shlapunov AU - Nikolai Tarkhanov TI - Navier--Stokes equations for elliptic complexes JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 3 EP - 27 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/ LA - en ID - JSFU_2019_12_1_a0 ER -
%0 Journal Article %A Azal Mera %A Alexander A. Shlapunov %A Nikolai Tarkhanov %T Navier--Stokes equations for elliptic complexes %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 3-27 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/ %G en %F JSFU_2019_12_1_a0
Azal Mera; Alexander A. Shlapunov; Nikolai Tarkhanov. Navier--Stokes equations for elliptic complexes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/
[1] J. Bec, K. Khanin, “Forced Burgers equation in an unbounded domain”, J. Stat. Phys., 113:5–6, 741–759 (2003) | MR
[2] J.M. Burgers, “Application of a model system to illustrate some points of the statistical theory of the turbulence”, Proc. Acad. Sci. Amsterdam, 43 (1940), 2–12 | MR
[3] A. Chorin, J.-E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd edition corrected, Springer Verlag, New York et al., 2000 | MR
[4] J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl
[5] Ch. Fefferman, Exiestence and smoothness of the Navier-Stokes equation, Clay Mathematics Institute, Cambridge, MA, 2000, 1–5
[6] M.I. Vishik, A.V. Fursikov, Mathematical Problems of Statistical Hydrodynamics, Nauka, 1980 (in Russian) | MR
[7] S. Gindikin, L. Volevich, Mixed Problem for Partial Differential Equations with Quasihomogeneous Principal Part, Amer. Math. Soc., Providence, RI, 1996 | MR
[8] E. Hopf, “The partial differential equation $u_t + u_x u = \mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[9] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr, 4 (1951), 213–231 | DOI | MR | Zbl
[10] H. Fujita, T. Kato, “On the Navier-Stokes initial value problem”, Arch. Ration. Mech. Anal., 16 (1964), 269–315 | DOI | MR | Zbl
[11] M. Kardar, G. Parisi, Y.-C. Zhang, “On a quasilinear parabolic equation occurring in aerodynamics”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl
[12] T. Kato, “Strong $L^p$ solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solution”, Math. Z., 187 (1984), 471–480 | DOI | MR | Zbl
[13] A.N. Kolmogorov, “Equations of turbulent mouvement of incompressible fluid”, Izv. AN SSSR, Physics Series, 6:1 (1942), 56–58 (in Russian)
[14] O.A. Ladyzhenskaya, “On the solution of nonstationary operator equations”, Mat. Sb., 39:4 (1956), 491–524 (in Russian) | MR | Zbl
[15] O. A. Ladyzhenskaya, “On nonstationary operator equations and their applications to linear problems of mathematical physics”, Mat. Sb., 45:2 (1958), 123–158 (in Russian) | MR | Zbl
[16] O.A. Ladyzhenskaya, V.A. Solonnikov, “Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Trudy Mat. Inst. Steklov, 59, Acad. Sci. USSR, M.–L., 1960, 115–173 (in Russian) | MR
[17] O.A. Ladyzhenskaya, Mathematical Problems of Incompressible Viscous Fluid, Nauka, M., 1970 (in Russian) | MR
[18] O.A. Ladyzhenskaya, “The sixth prize millenium problem: Navier-Stokes equations, existence and smoothness”, Russian Math. Surveys, 58:2 (2003), 251–286 | DOI | MR | Zbl
[19] J. Leray, “Essai sur les mouvements plans d'un liquid visqueux que limitend des parois”, J. Math. Pures Appl., 9 (1934), 331–418 | MR | Zbl
[20] J. Leray, “Sur le mouvement plans d'un liquid visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl
[21] J.-L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer-Verlag, Berlin, 1961 | MR
[22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR
[23] O.I. Makhmudov, N. Tarkhanov, “The first mixed problem for the nonstationary Lamé system”, Preprints des Instituts für Mathematik der Universität Potsdam, 3:10 (2014), 1–19 | MR
[24] V.P. Mikhailov, Partial Differential Equations, Nauka, M., 1976 | MR
[25] J. Serrin, “On the interior regularity of weak solutions of the Navier-Stokes equation”, Arch. Rat. Mech. and Anal., 9 (1962), 187–195 | DOI | MR | Zbl
[26] L.N. Slobodetskii, “The generalised spaces of S.L. Sobolev and their application to boundary value problems for partial differential equations”, Uch. Zapiski Leningr. Ped. Inst. im. A.I. Gertsena, 197, 1958, 54–112 | MR
[27] V.A. Solonnikov, “On estimates of solutions of nonstationary Stokes problem in anisotropic Sobolev spaces and on estimates of the resolvent of the Stokes operator”, Russian Math. Surveys, 58:2 (2003), 331–365 | DOI | MR | Zbl
[28] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl
[29] R. Temam, Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979 | MR | Zbl