Navier--Stokes equations for elliptic complexes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue our study of invariant forms of the classical equations of mathematical physics, such as the Maxwell equations or the Lamé system, on manifold with boundary. To this end we interpret them in terms of the de Rham complex at a certain step. On using the structure of the complex we get an insight to predict a degeneracy deeply encoded in the equations. In the present paper we develop an invariant approach to the classical Navier–Stokes equations.
Keywords: Navier–Stokes equations, classical solution.
@article{JSFU_2019_12_1_a0,
     author = {Azal Mera and Alexander A. Shlapunov and Nikolai Tarkhanov},
     title = {Navier--Stokes equations for elliptic complexes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/}
}
TY  - JOUR
AU  - Azal Mera
AU  - Alexander A. Shlapunov
AU  - Nikolai Tarkhanov
TI  - Navier--Stokes equations for elliptic complexes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 3
EP  - 27
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/
LA  - en
ID  - JSFU_2019_12_1_a0
ER  - 
%0 Journal Article
%A Azal Mera
%A Alexander A. Shlapunov
%A Nikolai Tarkhanov
%T Navier--Stokes equations for elliptic complexes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 3-27
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/
%G en
%F JSFU_2019_12_1_a0
Azal Mera; Alexander A. Shlapunov; Nikolai Tarkhanov. Navier--Stokes equations for elliptic complexes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 1, pp. 3-27. http://geodesic.mathdoc.fr/item/JSFU_2019_12_1_a0/

[1] J. Bec, K. Khanin, “Forced Burgers equation in an unbounded domain”, J. Stat. Phys., 113:5–6, 741–759 (2003) | MR

[2] J.M. Burgers, “Application of a model system to illustrate some points of the statistical theory of the turbulence”, Proc. Acad. Sci. Amsterdam, 43 (1940), 2–12 | MR

[3] A. Chorin, J.-E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd edition corrected, Springer Verlag, New York et al., 2000 | MR

[4] J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl

[5] Ch. Fefferman, Exiestence and smoothness of the Navier-Stokes equation, Clay Mathematics Institute, Cambridge, MA, 2000, 1–5

[6] M.I. Vishik, A.V. Fursikov, Mathematical Problems of Statistical Hydrodynamics, Nauka, 1980 (in Russian) | MR

[7] S. Gindikin, L. Volevich, Mixed Problem for Partial Differential Equations with Quasihomogeneous Principal Part, Amer. Math. Soc., Providence, RI, 1996 | MR

[8] E. Hopf, “The partial differential equation $u_t + u_x u = \mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[9] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nachr, 4 (1951), 213–231 | DOI | MR | Zbl

[10] H. Fujita, T. Kato, “On the Navier-Stokes initial value problem”, Arch. Ration. Mech. Anal., 16 (1964), 269–315 | DOI | MR | Zbl

[11] M. Kardar, G. Parisi, Y.-C. Zhang, “On a quasilinear parabolic equation occurring in aerodynamics”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl

[12] T. Kato, “Strong $L^p$ solutions of the Navier-Stokes equation in $\mathbb{R}^m$, with applications to weak solution”, Math. Z., 187 (1984), 471–480 | DOI | MR | Zbl

[13] A.N. Kolmogorov, “Equations of turbulent mouvement of incompressible fluid”, Izv. AN SSSR, Physics Series, 6:1 (1942), 56–58 (in Russian)

[14] O.A. Ladyzhenskaya, “On the solution of nonstationary operator equations”, Mat. Sb., 39:4 (1956), 491–524 (in Russian) | MR | Zbl

[15] O. A. Ladyzhenskaya, “On nonstationary operator equations and their applications to linear problems of mathematical physics”, Mat. Sb., 45:2 (1958), 123–158 (in Russian) | MR | Zbl

[16] O.A. Ladyzhenskaya, V.A. Solonnikov, “Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid”, Trudy Mat. Inst. Steklov, 59, Acad. Sci. USSR, M.–L., 1960, 115–173 (in Russian) | MR

[17] O.A. Ladyzhenskaya, Mathematical Problems of Incompressible Viscous Fluid, Nauka, M., 1970 (in Russian) | MR

[18] O.A. Ladyzhenskaya, “The sixth prize millenium problem: Navier-Stokes equations, existence and smoothness”, Russian Math. Surveys, 58:2 (2003), 251–286 | DOI | MR | Zbl

[19] J. Leray, “Essai sur les mouvements plans d'un liquid visqueux que limitend des parois”, J. Math. Pures Appl., 9 (1934), 331–418 | MR | Zbl

[20] J. Leray, “Sur le mouvement plans d'un liquid visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[21] J.-L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer-Verlag, Berlin, 1961 | MR

[22] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéare, Dunod/Gauthier-Villars, Paris, 1969 | MR

[23] O.I. Makhmudov, N. Tarkhanov, “The first mixed problem for the nonstationary Lamé system”, Preprints des Instituts für Mathematik der Universität Potsdam, 3:10 (2014), 1–19 | MR

[24] V.P. Mikhailov, Partial Differential Equations, Nauka, M., 1976 | MR

[25] J. Serrin, “On the interior regularity of weak solutions of the Navier-Stokes equation”, Arch. Rat. Mech. and Anal., 9 (1962), 187–195 | DOI | MR | Zbl

[26] L.N. Slobodetskii, “The generalised spaces of S.L. Sobolev and their application to boundary value problems for partial differential equations”, Uch. Zapiski Leningr. Ped. Inst. im. A.I. Gertsena, 197, 1958, 54–112 | MR

[27] V.A. Solonnikov, “On estimates of solutions of nonstationary Stokes problem in anisotropic Sobolev spaces and on estimates of the resolvent of the Stokes operator”, Russian Math. Surveys, 58:2 (2003), 331–365 | DOI | MR | Zbl

[28] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl

[29] R. Temam, Theory and Numerical Analysis, North Holland Publ. Comp., Amsterdam, 1979 | MR | Zbl