Permanents as formulas of summation over an algebra with a unique $n$-ary operation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 796-799.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new general definition for permanents over an algebra with a unique $n$-ary operation and study their properties. In particular, it is shown that properties of these permanents coincide with the basic properties of the classical Binet–Cauchy permanent (1812).
Keywords: permanents, noncommutative and multioperator algebras, the polarization theorem, polynomial identities.
@article{JSFU_2018_11_6_a15,
     author = {Georgy P. Egorychev},
     title = {Permanents as formulas of summation over an algebra with a unique $n$-ary operation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {796--799},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/}
}
TY  - JOUR
AU  - Georgy P. Egorychev
TI  - Permanents as formulas of summation over an algebra with a unique $n$-ary operation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 796
EP  - 799
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/
LA  - en
ID  - JSFU_2018_11_6_a15
ER  - 
%0 Journal Article
%A Georgy P. Egorychev
%T Permanents as formulas of summation over an algebra with a unique $n$-ary operation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 796-799
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/
%G en
%F JSFU_2018_11_6_a15
Georgy P. Egorychev. Permanents as formulas of summation over an algebra with a unique $n$-ary operation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 796-799. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/

[1] A. Barvinok, New permanent estimators via noncommutative determinants, 2000, 13 pp., arXiv: math/0007153

[2] I.M. Gelfand, V.S. Retakh, “Determinants of matrices over noncommutative rings”, Functional. Anal. and Prilozhen., 25:2 (1991), 91–102 | DOI | MR | Zbl

[3] G.P. Egorychev, “New formulas for the permanent”, Soviet Math. Dokl., 254:4 (1980), 784–787 | MR | Zbl

[4] G.P. Egorychev, “A new family of polynomial identities for computing determinants”, Math. Dokl., 2:1 (2013), 1–3 | MR

[5] V.V. Kochergin, “About complexity of computation one-terms of powers”, Discrete Analysis, 27, IM SO RAN, Novosibirsk, 1994, 94–107 (in Russian) | MR | Zbl

[6] Yu.D. Burago, V.A. Zalgaller, Geometric Inequalities, Springer Verlag, N.Y., 1988 | MR | Zbl

[7] G.P. Egorychev, Discrete mathematics. Permanents, Siberian Federal Univ., Krasnoyarsk, 2007 (in Russian) | MR

[8] H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publ., N.Y., 1995 | MR

[9] V.T. Filippov, “On the n-Lie algebra of Jacobians”, Sibirsk. Math. Zh., 39:3 (1998), 660–669 (in Russian) | MR | Zbl

[10] L.V. Sabinin, Methods of Nonassociative Algebra in Differential Geometry (in Supplement to Russian translation of S.K. Kobayashi and K. Nomizu "Foundations of Differential Geometry"), Nauka, M., 1981 (in Russian) | MR

[11] L. Chakhmakhchyan, N.J. Cerf, R. Garcia-Paton, Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices, 2017, 9 pp., arXiv: 1609.02416