Permanents as formulas of summation over an algebra with a unique $n$-ary operation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 796-799
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a new general definition for permanents over an algebra with a unique $n$-ary operation and study their properties. In particular, it is shown that properties of these permanents coincide with the basic properties of the classical Binet–Cauchy permanent (1812).
Keywords:
permanents, noncommutative and multioperator algebras, the polarization theorem, polynomial identities.
@article{JSFU_2018_11_6_a15,
author = {Georgy P. Egorychev},
title = {Permanents as formulas of summation over an algebra with a unique $n$-ary operation},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {796--799},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/}
}
TY - JOUR AU - Georgy P. Egorychev TI - Permanents as formulas of summation over an algebra with a unique $n$-ary operation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 796 EP - 799 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/ LA - en ID - JSFU_2018_11_6_a15 ER -
%0 Journal Article %A Georgy P. Egorychev %T Permanents as formulas of summation over an algebra with a unique $n$-ary operation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 796-799 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/ %G en %F JSFU_2018_11_6_a15
Georgy P. Egorychev. Permanents as formulas of summation over an algebra with a unique $n$-ary operation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 796-799. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/