Permanents as formulas of summation over an algebra with a unique $n$-ary operation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 796-799

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new general definition for permanents over an algebra with a unique $n$-ary operation and study their properties. In particular, it is shown that properties of these permanents coincide with the basic properties of the classical Binet–Cauchy permanent (1812).
Keywords: permanents, noncommutative and multioperator algebras, the polarization theorem, polynomial identities.
@article{JSFU_2018_11_6_a15,
     author = {Georgy P. Egorychev},
     title = {Permanents as formulas of summation over an algebra with a unique $n$-ary operation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {796--799},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/}
}
TY  - JOUR
AU  - Georgy P. Egorychev
TI  - Permanents as formulas of summation over an algebra with a unique $n$-ary operation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 796
EP  - 799
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/
LA  - en
ID  - JSFU_2018_11_6_a15
ER  - 
%0 Journal Article
%A Georgy P. Egorychev
%T Permanents as formulas of summation over an algebra with a unique $n$-ary operation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 796-799
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/
%G en
%F JSFU_2018_11_6_a15
Georgy P. Egorychev. Permanents as formulas of summation over an algebra with a unique $n$-ary operation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 796-799. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a15/