Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 776-780.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that a polynomial mapping of the type $ (x \rightarrow F[x+f(a(x)+b(y))],\, y \rightarrow G[y+g(c(x)+d(y))])$, where $(a,b,c,d,f,g,F,G)$ are polynomials with non-zero Jacobian is a composition of no more than 3 linear or triangular transformations. This result, however, leaves the possibility of existence of a counterexample of polynomial complexity two.
Keywords: analytical complexity.
@article{JSFU_2018_11_6_a12,
     author = {Maria A. Stepanova},
     title = {Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {776--780},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/}
}
TY  - JOUR
AU  - Maria A. Stepanova
TI  - Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 776
EP  - 780
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/
LA  - en
ID  - JSFU_2018_11_6_a12
ER  - 
%0 Journal Article
%A Maria A. Stepanova
%T Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 776-780
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/
%G en
%F JSFU_2018_11_6_a12
Maria A. Stepanova. Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 776-780. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/

[1] H. Bass, E.H. Connell, D. Wright, “The Jacobian Cjnjecture: Reduction of Degree and Formal Expansion of the Inverse”, Bulletin (New Series) of the American Mathematical Society, 7:2 (1982), 287–330 | DOI | MR | Zbl

[2] T.T. Moh, “On the Jacobian conjecture and the configurations of roots”, Journal fur die reine und angewandte Mathematik, 340 (1983), 140–212 | MR | Zbl

[3] V.K. Beloshapka, “Analytic Complexity of Functions of Two Variables”, Russian Journal of Mathematical Physics, 14:3 (2007), 243–249 | DOI | MR | Zbl

[4] V.K. Beloshapka, “Analytical Complexity: Development of the Topic”, Russian Journal of Mathematical Physics, 19:4 (2012), 428–439 | DOI | MR | Zbl