Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 776-780
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that a polynomial mapping of the type $ (x \rightarrow F[x+f(a(x)+b(y))],\, y \rightarrow G[y+g(c(x)+d(y))])$, where $(a,b,c,d,f,g,F,G)$ are polynomials with non-zero Jacobian is a composition of no more than 3 linear or triangular transformations. This result, however, leaves the possibility of existence of a counterexample of polynomial complexity two.
Keywords:
analytical complexity.
@article{JSFU_2018_11_6_a12,
author = {Maria A. Stepanova},
title = {Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {776--780},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/}
}
TY - JOUR
AU - Maria A. Stepanova
TI - Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2018
SP - 776
EP - 780
VL - 11
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/
LA - en
ID - JSFU_2018_11_6_a12
ER -
%0 Journal Article
%A Maria A. Stepanova
%T Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 776-780
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/
%G en
%F JSFU_2018_11_6_a12
Maria A. Stepanova. Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 776-780. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/