Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 776-780
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that a polynomial mapping of the type $ (x \rightarrow F[x+f(a(x)+b(y))],\, y \rightarrow G[y+g(c(x)+d(y))])$, where $(a,b,c,d,f,g,F,G)$ are polynomials with non-zero Jacobian is a composition of no more than 3 linear or triangular transformations. This result, however, leaves the possibility of existence of a counterexample of polynomial complexity two.
Keywords:
analytical complexity.
@article{JSFU_2018_11_6_a12,
author = {Maria A. Stepanova},
title = {Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {776--780},
year = {2018},
volume = {11},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/}
}
TY - JOUR
AU - Maria A. Stepanova
TI - Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2018
SP - 776
EP - 780
VL - 11
IS - 6
UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/
LA - en
ID - JSFU_2018_11_6_a12
ER -
Maria A. Stepanova. Jacobian conjecture for mappings of a special type in ${\mathbb C}^2$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 776-780. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a12/
[1] H. Bass, E.H. Connell, D. Wright, “The Jacobian Cjnjecture: Reduction of Degree and Formal Expansion of the Inverse”, Bulletin (New Series) of the American Mathematical Society, 7:2 (1982), 287–330 | DOI | MR | Zbl
[2] T.T. Moh, “On the Jacobian conjecture and the configurations of roots”, Journal fur die reine und angewandte Mathematik, 340 (1983), 140–212 | MR | Zbl
[3] V.K. Beloshapka, “Analytic Complexity of Functions of Two Variables”, Russian Journal of Mathematical Physics, 14:3 (2007), 243–249 | DOI | MR | Zbl
[4] V.K. Beloshapka, “Analytical Complexity: Development of the Topic”, Russian Journal of Mathematical Physics, 19:4 (2012), 428–439 | DOI | MR | Zbl