Optimal formulas of numerical integration with derivatives in Sobolev space
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 764-775.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of construction of optimal quadrature formulas in the sense of Sard in the space $L_2^{(m)}(0,1)$ is considered in the paper . The quadrature sum consists of values of the integrand at internal nodes and values of the first, third and fifth derivatives of the integrand at the end points of the integration interval. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number $N$ and for any $m\geq 6$ using Sobolev method. It is based on discrete analogue of the differential operator $d^{2m}/dx^{2m}$. In particular, for $m=6,7$ optimality of the classical Euler–Maclaurin quadrature formula is obtained. Starting from $m=8$ new optimal quadrature formulas are obtained.
Keywords: error functional, extremal function, Sobolev space
Mots-clés : optimal quadrature formula, optimal coefficients.
@article{JSFU_2018_11_6_a11,
     author = {Kholmat M. Shadimetov and Farhod A. Nuraliev},
     title = {Optimal formulas of numerical integration with derivatives in {Sobolev} space},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {764--775},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/}
}
TY  - JOUR
AU  - Kholmat M. Shadimetov
AU  - Farhod A. Nuraliev
TI  - Optimal formulas of numerical integration with derivatives in Sobolev space
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 764
EP  - 775
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/
LA  - en
ID  - JSFU_2018_11_6_a11
ER  - 
%0 Journal Article
%A Kholmat M. Shadimetov
%A Farhod A. Nuraliev
%T Optimal formulas of numerical integration with derivatives in Sobolev space
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 764-775
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/
%G en
%F JSFU_2018_11_6_a11
Kholmat M. Shadimetov; Farhod A. Nuraliev. Optimal formulas of numerical integration with derivatives in Sobolev space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 764-775. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/

[1] P. Blaga, Gh. Coman, “Some problems on optimal quadrature”, Stud. Univ. Babeş-Bolyai Math., 52:4 (2007), 21–44 | MR | Zbl

[2] B. Bojanov, “Optimal quadrature formulas”, Russian Mathematical Surveys, 60:6 (2005), 1035–1055 | DOI | MR

[3] T. Catinaş, Gh. Coman, “Optimal quadrature formulas based on the $\phi$-function method”, Stud. Univ. Babeş-Bolyai Math., 51:1 (2006), 49–64 | MR | Zbl

[4] M.A. Chakhkiev, “Linear differential operators with real spectrum, and optimal quadrature formulas”, Izv. Akad. Nauk SSSR, Ser. Mat., 48:5 (1984), 1078–1108 (in Russian) | MR

[5] A.O. Gelfond, Calculus of Finite Differences, Nauka, M., 1967 (in Russian) | MR

[6] R.W. Hamming, Numerical methods for Scientists and Engineers, McGraw Bill Book Company, Inc., USA, 1962 | MR | Zbl

[7] A.R. Hayotov, G.V. Milovanović, Kh.M. Shadimetov, “On an optimal quadrature formula in the sense of Sard”, Numerical Algorithms, 57:4 (2011), 487–510 | DOI | MR | Zbl

[8] P.Köhler, “On the weights of Sard's quadrature formulas”, Calcolo, 25 (1988), 169–186 | DOI | MR | Zbl

[9] F. Lanzara, “On optimal quadrature formulae”, J. Ineq. Appl., 5 (2000), 201–225 | MR | Zbl

[10] L.F. Meyers, A. Sard, “Best approximate integration formulas”, J. Math. Physics, 29 (1950), 118–123 | DOI | MR | Zbl

[11] S.M. Nikol'skii, “To question about estimation of approximation by quadrature formulas”, Uspekhi Matem. Nauk, 36:5:2 (1950), 165–177 (in Russian) | MR

[12] S.M. Nikol'skii, Quadrature Formulas, Nauka, M., 1988 (in Russian) | MR

[13] A. Sard, “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71 (1949), 80–91 | DOI | MR | Zbl

[14] A. Sard, Linear approximation, AMS, 1963 | MR | Zbl

[15] I.J. Schoenberg, “On monosplines of least deviation and best quadrature formulae”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 144–170 | DOI | MR | Zbl

[16] I.J. Schoenberg, S.D. Silliman, “On semicardinal quadrature formulae”, Math. Comp., 126 (1974), 483–497 | DOI | MR

[17] Kh.M. Shadimetov, Optimal formulas of approximate integration for differentiable functions, Candidate dissertation, Novosibirsk, 1983, arXiv: 1005.0163v1 [NA. math] | Zbl

[18] Kh.M. Shadimetov, “Optimal quadrature formulas in $L\sp{m}\sb{2}(\Omega )$ and $L\sp{m}\sb{2}(R\sp{1})$”, Dokl. Akad. Nauk UzSSR, 1983, no. 3, 5–8 (in Russian) | MR | Zbl

[19] Kh.M. Shadimetov, “The discrete analogue of the differential operator $d^{2m}/dx^{2m}$ and its construction”, Questions of Computations and Applied Mathematics, Tashkent, 1985, 22–35 ; Jan. 2010, arXiv: 1001.0556.v1 [math.NA] | Zbl

[20] Kh.M. Shadimetov, “Construction of weight optimal quadrature formulas in the space $L_2^{(m)} (0,N)$”, Siberian J. Comput. Math., 5:3 (2002), 275–293 (in Russian) | MR

[21] Kh.M. Shadimetov, A.R. Hayotov, “Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space”, J. Comput. Appl. Math., 235 (2011), 1114–1128 | DOI | MR | Zbl

[22] Kh.M. Shadimetov, A.R. Hayotov, “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211–243 | DOI | MR | Zbl

[23] Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev, “On an optimal quadrature formula in Sobolev space $L_2^{(m)}(0,1)$”, J. Comput. Appl. Math., 243 (2013), 91–112 | DOI | MR | Zbl

[24] S.L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, M., 1974 (in Russian) | MR

[25] S.L. Sobolev, “The coefficients of optimal quadrature formulas”, Selected Works of S. L. Sobolev, Springer, 2006, 561–566 | DOI | MR

[26] S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl

[27] F. Ya. Zagirova, On construction of optimal quadrature formulas with equal spaced nodes, Preprint No 25, Institut Mat., Sib. Otd. AN SSSR, Novosibirsk, 1982 (in Russian)

[28] Z. Zh.Zhamalov, Kh.M. Shadimetov, “About optimal quadrature formulas”, Dokl. Akademii Nauk UzSSR, 7 (1980), 3–5 (in Russian) | MR

[29] A.A. Zhensikbaev, “Monosplines of minimal norm and the best quadrature formulas”, Uspekhi Matem. Nauk, 36 (1981), 107–159 (in Russian) | MR