Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_6_a11, author = {Kholmat M. Shadimetov and Farhod A. Nuraliev}, title = {Optimal formulas of numerical integration with derivatives in {Sobolev} space}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {764--775}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/} }
TY - JOUR AU - Kholmat M. Shadimetov AU - Farhod A. Nuraliev TI - Optimal formulas of numerical integration with derivatives in Sobolev space JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 764 EP - 775 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/ LA - en ID - JSFU_2018_11_6_a11 ER -
%0 Journal Article %A Kholmat M. Shadimetov %A Farhod A. Nuraliev %T Optimal formulas of numerical integration with derivatives in Sobolev space %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 764-775 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/ %G en %F JSFU_2018_11_6_a11
Kholmat M. Shadimetov; Farhod A. Nuraliev. Optimal formulas of numerical integration with derivatives in Sobolev space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 6, pp. 764-775. http://geodesic.mathdoc.fr/item/JSFU_2018_11_6_a11/
[1] P. Blaga, Gh. Coman, “Some problems on optimal quadrature”, Stud. Univ. Babeş-Bolyai Math., 52:4 (2007), 21–44 | MR | Zbl
[2] B. Bojanov, “Optimal quadrature formulas”, Russian Mathematical Surveys, 60:6 (2005), 1035–1055 | DOI | MR
[3] T. Catinaş, Gh. Coman, “Optimal quadrature formulas based on the $\phi$-function method”, Stud. Univ. Babeş-Bolyai Math., 51:1 (2006), 49–64 | MR | Zbl
[4] M.A. Chakhkiev, “Linear differential operators with real spectrum, and optimal quadrature formulas”, Izv. Akad. Nauk SSSR, Ser. Mat., 48:5 (1984), 1078–1108 (in Russian) | MR
[5] A.O. Gelfond, Calculus of Finite Differences, Nauka, M., 1967 (in Russian) | MR
[6] R.W. Hamming, Numerical methods for Scientists and Engineers, McGraw Bill Book Company, Inc., USA, 1962 | MR | Zbl
[7] A.R. Hayotov, G.V. Milovanović, Kh.M. Shadimetov, “On an optimal quadrature formula in the sense of Sard”, Numerical Algorithms, 57:4 (2011), 487–510 | DOI | MR | Zbl
[8] P.Köhler, “On the weights of Sard's quadrature formulas”, Calcolo, 25 (1988), 169–186 | DOI | MR | Zbl
[9] F. Lanzara, “On optimal quadrature formulae”, J. Ineq. Appl., 5 (2000), 201–225 | MR | Zbl
[10] L.F. Meyers, A. Sard, “Best approximate integration formulas”, J. Math. Physics, 29 (1950), 118–123 | DOI | MR | Zbl
[11] S.M. Nikol'skii, “To question about estimation of approximation by quadrature formulas”, Uspekhi Matem. Nauk, 36:5:2 (1950), 165–177 (in Russian) | MR
[12] S.M. Nikol'skii, Quadrature Formulas, Nauka, M., 1988 (in Russian) | MR
[13] A. Sard, “Best approximate integration formulas; best approximation formulas”, Amer. J. Math., 71 (1949), 80–91 | DOI | MR | Zbl
[14] A. Sard, Linear approximation, AMS, 1963 | MR | Zbl
[15] I.J. Schoenberg, “On monosplines of least deviation and best quadrature formulae”, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal., 2 (1965), 144–170 | DOI | MR | Zbl
[16] I.J. Schoenberg, S.D. Silliman, “On semicardinal quadrature formulae”, Math. Comp., 126 (1974), 483–497 | DOI | MR
[17] Kh.M. Shadimetov, Optimal formulas of approximate integration for differentiable functions, Candidate dissertation, Novosibirsk, 1983, arXiv: 1005.0163v1 [NA. math] | Zbl
[18] Kh.M. Shadimetov, “Optimal quadrature formulas in $L\sp{m}\sb{2}(\Omega )$ and $L\sp{m}\sb{2}(R\sp{1})$”, Dokl. Akad. Nauk UzSSR, 1983, no. 3, 5–8 (in Russian) | MR | Zbl
[19] Kh.M. Shadimetov, “The discrete analogue of the differential operator $d^{2m}/dx^{2m}$ and its construction”, Questions of Computations and Applied Mathematics, Tashkent, 1985, 22–35 ; Jan. 2010, arXiv: 1001.0556.v1 [math.NA] | Zbl
[20] Kh.M. Shadimetov, “Construction of weight optimal quadrature formulas in the space $L_2^{(m)} (0,N)$”, Siberian J. Comput. Math., 5:3 (2002), 275–293 (in Russian) | MR
[21] Kh.M. Shadimetov, A.R. Hayotov, “Optimal quadrature formulas with positive coefficients in $L_2^{(m)}(0,1)$ space”, J. Comput. Appl. Math., 235 (2011), 1114–1128 | DOI | MR | Zbl
[22] Kh.M. Shadimetov, A.R. Hayotov, “Optimal quadrature formulas in the sense of Sard in $W_2^{(m,m-1)}$ space”, Calcolo, 51 (2014), 211–243 | DOI | MR | Zbl
[23] Kh.M. Shadimetov, A.R. Hayotov, F.A. Nuraliev, “On an optimal quadrature formula in Sobolev space $L_2^{(m)}(0,1)$”, J. Comput. Appl. Math., 243 (2013), 91–112 | DOI | MR | Zbl
[24] S.L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, M., 1974 (in Russian) | MR
[25] S.L. Sobolev, “The coefficients of optimal quadrature formulas”, Selected Works of S. L. Sobolev, Springer, 2006, 561–566 | DOI | MR
[26] S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl
[27] F. Ya. Zagirova, On construction of optimal quadrature formulas with equal spaced nodes, Preprint No 25, Institut Mat., Sib. Otd. AN SSSR, Novosibirsk, 1982 (in Russian)
[28] Z. Zh.Zhamalov, Kh.M. Shadimetov, “About optimal quadrature formulas”, Dokl. Akademii Nauk UzSSR, 7 (1980), 3–5 (in Russian) | MR
[29] A.A. Zhensikbaev, “Monosplines of minimal norm and the best quadrature formulas”, Uspekhi Matem. Nauk, 36 (1981), 107–159 (in Russian) | MR