Sequential empirical process of independence
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 634-643.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniform strong laws of large numbers and the central limit theorem for special sequential empirical process of independence for a certain class of measurable functions are considered in the paper.
Keywords: sequential empirical processes, metric entropy, Donsker theorem.
Mots-clés : Glivenko-Cantelli theorem
@article{JSFU_2018_11_5_a11,
     author = {Abdurahim A. Abdushukurov and Leyla R. Kakadjanova},
     title = {Sequential empirical process of independence},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {634--643},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/}
}
TY  - JOUR
AU  - Abdurahim A. Abdushukurov
AU  - Leyla R. Kakadjanova
TI  - Sequential empirical process of independence
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 634
EP  - 643
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/
LA  - en
ID  - JSFU_2018_11_5_a11
ER  - 
%0 Journal Article
%A Abdurahim A. Abdushukurov
%A Leyla R. Kakadjanova
%T Sequential empirical process of independence
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 634-643
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/
%G en
%F JSFU_2018_11_5_a11
Abdurahim A. Abdushukurov; Leyla R. Kakadjanova. Sequential empirical process of independence. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 634-643. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/

[1] A.A. Abdushukurov, L.R. Kakadjanova, “A class of special empirical processes of independence”, J. Siberian Federal Univ. Math. Phys., 8:2 (2015), 125–133 | DOI | MR

[2] J. Bae, S. Kim, “The sequential uniform law of large numbers”, Bull. Korean Math. Soc., 43:3 (2006), 479–486 | DOI | MR | Zbl

[3] A.W. Van der Vaart, J.A. Wellner, Weak convergence and empirical processes, Springer, 1996 | MR | Zbl

[4] A.W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998 | MR | Zbl

[5] Yu.V. Prokhorov, “An enlarge of S. N. Bernstein's inequality to the multivariate case”, Theory Probab. Appl., 13:3 (1968), 266–274 (in Russian) | MR