Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_5_a11, author = {Abdurahim A. Abdushukurov and Leyla R. Kakadjanova}, title = {Sequential empirical process of independence}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {634--643}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/} }
TY - JOUR AU - Abdurahim A. Abdushukurov AU - Leyla R. Kakadjanova TI - Sequential empirical process of independence JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 634 EP - 643 VL - 11 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/ LA - en ID - JSFU_2018_11_5_a11 ER -
%0 Journal Article %A Abdurahim A. Abdushukurov %A Leyla R. Kakadjanova %T Sequential empirical process of independence %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 634-643 %V 11 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/ %G en %F JSFU_2018_11_5_a11
Abdurahim A. Abdushukurov; Leyla R. Kakadjanova. Sequential empirical process of independence. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 5, pp. 634-643. http://geodesic.mathdoc.fr/item/JSFU_2018_11_5_a11/
[1] A.A. Abdushukurov, L.R. Kakadjanova, “A class of special empirical processes of independence”, J. Siberian Federal Univ. Math. Phys., 8:2 (2015), 125–133 | DOI | MR
[2] J. Bae, S. Kim, “The sequential uniform law of large numbers”, Bull. Korean Math. Soc., 43:3 (2006), 479–486 | DOI | MR | Zbl
[3] A.W. Van der Vaart, J.A. Wellner, Weak convergence and empirical processes, Springer, 1996 | MR | Zbl
[4] A.W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998 | MR | Zbl
[5] Yu.V. Prokhorov, “An enlarge of S. N. Bernstein's inequality to the multivariate case”, Theory Probab. Appl., 13:3 (1968), 266–274 (in Russian) | MR