Uniqueness of a solution of an ice plate oscillation problem in a channel
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 449-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper an initial-boundary value problem for two mathematical models of elastic and viscoelastic oscillations of a thin ice plate in an infinite channel under the action of external load is considered in terms of the linear theory of hydroelasticity. The viscosity of ice is treated in the context of the Kelvin–Voigt model. The joint system of equations for the ice plate and an ideal fluid is considered. Boundary conditions are conditions of clamped edges for the ice plate at the walls of the channel, condition of impermeability for the flow velocity potential and the damping conditions for the oscillations at infinity. The uniqueness theorem for the classical solution of the initial-boundary value problem is proved.
Keywords: viscoelastic oscillations, ice plate, external load, uniqueness.
Mots-clés : Euler equations
@article{JSFU_2018_11_4_a5,
     author = {Konstantin A. Shishmarev and Alexander A. Papin},
     title = {Uniqueness of a solution of an ice plate oscillation problem in a channel},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {449--458},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a5/}
}
TY  - JOUR
AU  - Konstantin A. Shishmarev
AU  - Alexander A. Papin
TI  - Uniqueness of a solution of an ice plate oscillation problem in a channel
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 449
EP  - 458
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a5/
LA  - en
ID  - JSFU_2018_11_4_a5
ER  - 
%0 Journal Article
%A Konstantin A. Shishmarev
%A Alexander A. Papin
%T Uniqueness of a solution of an ice plate oscillation problem in a channel
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 449-458
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a5/
%G en
%F JSFU_2018_11_4_a5
Konstantin A. Shishmarev; Alexander A. Papin. Uniqueness of a solution of an ice plate oscillation problem in a channel. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 449-458. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a5/

[1] V. Squire, R. Hosking, A. Kerr, Langhorne Moving loads on ice, Kluwer Academic Publishers, 1996

[2] I.V. Sturova, “Unsteady three–dimensional sources in deep water with an elastic cover and their applications”, J. Fluid Mech., 730 (2013), 392–418 | DOI | MR | Zbl

[3] V.D. Zhestkaya, M.R. Dzhabrailov, “Numerical solution of the problem of motion along an ice cover with a crack”, PMTF, 49:3 (2008), 151–156 (in Russian) | MR | Zbl

[4] A.A. Matiushina, A.V. Pogorelova, V.M. Kozin, “Effect of Impact Load on the Ice Cover During the Landing of an Airplane”, International Journal of Offshore and Polar Engineering, 26:1 (2016), 6–12 | DOI

[5] A.A. Korobkin, T.I. Khabakhpasheva, A.A. Papin, “Waves propagating along a channel with ice cover”, European Journal of Mechanics – B/Fluids, 47:3 (2014), 166–175 | DOI | MR | Zbl

[6] P. Brocklehurst, A.A. Korobkin, E.I.Pǎrǎu, “Hydroelastic wave diffraction by a vertical cylinder”, Philos. Trans. Roy. Soc. London, Ser. A: Math. Phys. Eng. Sci., 369 (2011), 2833–2851 | MR

[7] S. Malenica, A.A. Korobkin, “Water wave diffraction by vertical circular cylinder in partially frozen sea”, Proc. 18th Internations Workshop on Water Waves and Floating Bodies (Le Croisic, France, 2003)

[8] P. Brocklehurst, Hydroelastic waves and their interaction with fixed structures, PhD thesis, University of East Anglia, UK, 2012

[9] K. Shishmarev, T. Khabakhpasheva, A. Korobkin, “The response of ice cover to a load moving along a frozen channel”, Applied Ocean Research, 59 (2016), 313–326 | DOI

[10] V.M. Kozin, V.D. Zhestkaya, A.V. Pogorelova, S.D. Chizhumov, M.P. Dzhabailov, V.S. Morozov, A.N. Kustov, Applied problems of the dynamics of ice cover, Akad. Estestvennyh Nauk, M., 2008 (in Russian) | MR

[11] L.V. Ovsyannikov, “General equations and examples”, The problem of unsteady motion of fluid with a free boundary, Nauka, Novosibirsk, 1967 (in Russian) | MR

[12] V.I. Sedenko, “Solvability of initial-boundary value problems for Euler's equations for flows of an ideal incompressible nonhomogeneous fluid and an ideal barotropic fluid bounded by free surfaces”, Mat. sb., 185:11 (1995), 57–78 | MR

[13] W.A. Weigant, A.A. Papin, “On the uniqueness of the solution of the flow problem with a given vortex”, Mathematical notes, 96:6 (2014), 820–826 | MR | Zbl

[14] A.M. Khludnev, Problems of the theory of elasticity in nonsmooth domains, Fizmat, M., 2010 (in Russian)

[15] A.M. Khludnev, “On the bending of an elastic plate with an exfoliated thin rigid inclusion”, Sib. journal. industr. mat., 14:1 (2011), 114–126 (in Russian) | MR | Zbl

[16] N.V. Neustroeva, N.P. Lazarev, “Junction problem for Euler-Bernoulli and Timoshenko elastic beams”, Sib. Elektron. Mat. Izv., 13:1 (2016), 26–37 | MR | Zbl

[17] S.P. Timoshenko, J. Goodier, Theory of Elasticity, Nauka, M., 1975 (in Russian) | MR

[18] H. Lu, L. Sun, J. Sun, “Existence of positive solutions to a non-positive elastic beam equation with both ends fixed”, Boundary Value Problems, 56 (2012) | DOI | MR

[19] M. Basson, M. de Villiers, N. F. J. van Rensburg, “Solvability of a Model for the Vibration of a Beam with a Damping Tip Body”, Journal of Applied Mathematics, 2014, 298092 | DOI | MR