Successive approximation for the inhomogeneous Burgers equation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 519-531.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inhomogeneous Burgers equation is a simple form of the Navier-Stokes equations. From the analytical point of view, the inhomogeneous form is poorly studied, the complete analytical solution depending closely on the form of the nonhomogeneous term.
Keywords: Navier-Stokes equations, classical solution.
@article{JSFU_2018_11_4_a13,
     author = {Azal Mera and Vitaly A. Stepanenko and Nikolai Tarkhanov},
     title = {Successive approximation for the inhomogeneous {Burgers} equation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {519--531},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a13/}
}
TY  - JOUR
AU  - Azal Mera
AU  - Vitaly A. Stepanenko
AU  - Nikolai Tarkhanov
TI  - Successive approximation for the inhomogeneous Burgers equation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 519
EP  - 531
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a13/
LA  - en
ID  - JSFU_2018_11_4_a13
ER  - 
%0 Journal Article
%A Azal Mera
%A Vitaly A. Stepanenko
%A Nikolai Tarkhanov
%T Successive approximation for the inhomogeneous Burgers equation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 519-531
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a13/
%G en
%F JSFU_2018_11_4_a13
Azal Mera; Vitaly A. Stepanenko; Nikolai Tarkhanov. Successive approximation for the inhomogeneous Burgers equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 519-531. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a13/

[1] H. Bateman, “Some recent researches on the motion of fluid”, Mon. Weather Rev., 43 (1915), 163–170 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[2] Y. Benia, B.-K. Sadallah, “Existence of solutions to Burgers equation in domains that can be transformed into rectangles”, Electr. J. Diff. Eq., 157 (2016), 1–13 | MR

[3] J.M. Burgers, “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR

[4] J.M. Burgers, The Nonlinear Diffusion Equation, Reidel, Dordrecht, 1974 | Zbl

[5] H.R. Clark, M.A. Rincon, A. Silva, “Analysis and numerical simulation of viscous Burgers equation”, Numer. Funct. Anal. and Optim., 32:7 (2011), 695–716 | DOI | MR | Zbl

[6] J.D. Cole, “On a quasilinear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9 (1951), 225–236 | DOI | MR | Zbl

[7] A.R. Forsyth, Theory of Differential Equations, v. 4, Partial Differential Equations, Cambridge University Press, Cambridge, 1906

[8] E. Hopf, “The partial differential equation $u_t + u_x u = \mu u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl

[9] M. Kardar, G. Parisi, Y.-C. Zhang, “On a quasilinear parabolic equation occurring in aerodynamics”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl

[10] M. Kac, Probability and Related Topics in the Physical Sciences, Interscience Publishers, UK, 1959 | MR

[11] J. Kevorkian, Partial Differential Equations: Analytical Solution Techniques, Brooks/Cole Publ., Pacific Grove, California, 1990 | MR | Zbl

[12] V.A. Kondrat'ev, “Boundary problems for parabolic equations in closed domains”, Trans. Moscow Math. Soc., 15 (1966), 450–504 | Zbl

[13] I.G. Petrovskii, “On the solution of the first boundary value problem for the heat equation”, Uch. Zapiski MGU, 2 (1934), 55–59 (in Russian) | Zbl

[14] B.-K. Sadallah, “Étude d'un problème $2m\,$-parabolique dans des domaines plan non rectangulaires”, Boll. U.M.I., 6 (1983), 51–112 | MR

[15] A. Shlapunov, N. Tarkhanov, “An open mapping theorem for the Navier-Stokes equations”, Prepr. Inst. of Math. Univ. of Potsdam, 5:10 (2016), 1–80

[16] L.N. Slobodetskij, “The generalised spaces of S.L. Sobolev and their application to boundary value problems for partial differential equations”, Uch. Zap. Leningr. Ped. Inst. im. A. I. Gertsena, 197 (1958), 54–112 (in Russian) | MR | Zbl

[17] R. Temam, Navier-Stokes Equations, AMS, Providence, RI, 1984 | MR | Zbl

[18] G.W. Whitham, Lectures on Wave Propagation, Narosa Publ. House, New Dehli, 1979 | MR