Theoretical study of electrolyte diffusion through polarizable nanopores
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 494-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

The diffusion of binary aqueous electrolytes through nanopores with dielectric as well as conductive surface is investigated theoretically on the basis of Space–Charge model. The latter is extended to the case of polarizable nanopore wall. It is shown that the diffusion of ions with different mobilities generates the electric field, which induces non–uniform surface charge in a polarizable nanopore. It results in charge separation inside the pore and leads to a dramatic enhancement of membrane potential in comparison with a non-polarizable nanopore. The calculations are performed for three aqueous electrolytes based on KCl, NaCl, and LiOH. The influence of electrolyte type and concentration difference applied across the pore on the ion transport and membrane potential is discussed and analyzed.
Keywords: nanoporous membrane, electrolyte transport, induced charge, electric double layer, membrane potential, numerical modelling.
Mots-clés : diffusion
@article{JSFU_2018_11_4_a10,
     author = {Ilya I. Ryzhkov and Anton S. Vyatkin and Andrey V. Minakov},
     title = {Theoretical study of electrolyte diffusion through polarizable nanopores},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {494--504},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a10/}
}
TY  - JOUR
AU  - Ilya I. Ryzhkov
AU  - Anton S. Vyatkin
AU  - Andrey V. Minakov
TI  - Theoretical study of electrolyte diffusion through polarizable nanopores
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 494
EP  - 504
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a10/
LA  - en
ID  - JSFU_2018_11_4_a10
ER  - 
%0 Journal Article
%A Ilya I. Ryzhkov
%A Anton S. Vyatkin
%A Andrey V. Minakov
%T Theoretical study of electrolyte diffusion through polarizable nanopores
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 494-504
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a10/
%G en
%F JSFU_2018_11_4_a10
Ilya I. Ryzhkov; Anton S. Vyatkin; Andrey V. Minakov. Theoretical study of electrolyte diffusion through polarizable nanopores. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 4, pp. 494-504. http://geodesic.mathdoc.fr/item/JSFU_2018_11_4_a10/

[1] H. Strathmann, Introduction to membrane science, Wiley–VCH, 2011

[2] Y. Tanaka, Ion Exchange Membranes: Fundamentals and Applications, Elsevier, Amsterdam, 2015

[3] A.B. Yaroslavtsev, V.V. Nikonenko, V.I. Zabolotsky, “Ion transfer in ion–exchange and membrane materials”, Russ. Chem. Rev., 72:5 (2003), 393–421 | DOI

[4] T. Teorell, Proc. Soc. Exp. Biol. Med., 33 (1935), 282–285 | DOI

[5] K.H. Meyer, J.F. Sievers, “La perméabilité des membranes I. Théorie de la perméabilité ionique”, Helv. Chim. Acta, 19 (1936), 649–664 | DOI

[6] A.H. Galama, J.W. Post, H.V.M. Hamelers, V.V. Nikonenko, P.M. Biesheuvel, J. Membr. Sci. Res., 2 (2016), 128–140

[7] R.J. Gross, J.F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI

[8] P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI

[9] G.B. Westermann-Clark, J.L. Anderson, “Experimental verification of the space–charge model for electrokinetics in charged microporous membranes”, J. Electrochem. Soc., 130 (1983), 839–847 | DOI

[10] G.B. Westermann–Clark, C.C. Christoforou, “The exclusion–diffusion potential in charged porous membranes”, J. Electroanal. Chem., 198 (1986), 213–231 | DOI

[11] M. Nishizawa, V.P. Menon, C.R. Martin, “Metal nanotubule membranes with electrochemically switchable ion–transport selectivity”, Science, 268 (1995), 700–702 | DOI

[12] C.R. Martin, M. Nishizawa, K. Jirage, M. Kang, S.B. Lee, “Controlling ion–transport selectivity in gold nanotubule membranes”, Adv. Mater., 13 (2001), 1351–1362 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[13] I.I. Ryzhkov, A.V. Minakov, “Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential / charge density”, J. Membr. Sci., 520 (2016), 515–528 | DOI

[14] I.I. Ryzhkov, A.V. Minakov, “Finite ion size effects on electrolyte transport in nanofiltration membranes”, J. Sib. Fed. Univer. Math. $\$ Phys., 10 (2017), 186–198 | DOI

[15] M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, “Towards an understanding of induced–charge electrokinetics at large applied voltages in concentrated solutions”, Adv. Colloid Interface Sci., 152 (2009), 48–88 | DOI

[16] M.Z. Bazant, T.M. Squires, “Induced–charge electrokinetic phenomena”, Curr. Op. Coll. Inter. Sci., 15 (2010), 203–213 | DOI

[17] C. Zhao, Y. Song, C. Yang, “Induced–charge electrokinetics in a conducting nanochannel with broken geometric symmetry: towards a flexible control of ionic transport”, Phys. Fluids, 27 (2015), 012003 | DOI

[18] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Shiverskiy, M.M. Simunin, “Induced–charge enhancement of diffusion potential in membranes with polarizable nanopores”, Phys. Rev. Lett., 119 (2017), 226001 | DOI

[19] I.I. Ryzhkov, D.V. Lebedev, V.S. Solodovnichenko, A.V. Minakov, M.M. Simunin, “On the origin of membrane potential in membranes with polarizable nanopores”, J. Membrane Science, 549 (2018), 616–630 | DOI

[20] V.S. Solodovnichenko, D.V. Lebedev, V.V. Bykanova, A.V. Shiverskiy, M.M. Simunin, V.A. Parfenov, I.I. Ryzhkov, “Carbon coated alumina nanofiber membrane for selective ion transport”, Adv. Engineer. Mater., 20 (2017), 1700244 | DOI

[21] S. Levine, J.R. Marriott, G. Neale, N. Epstein, “Theory of electrokinetic flow in fine cylindrical capillaries at high zeta–potentials”, J. Coll. Inter. Sci., 52 (1975), 136–149 | DOI

[22] E.L. Cussler, Diffusion in liquids, Cambdridge University Press, 2009