New method to determine topology of low-dimension manifold approximating multidimensional data sets
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 322-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

New method is proposed to identify topology of a low-dimensional manifold approximating multidimensional datasets. The method is based on the implementation of the compliment for the discrete set of data. Some essential properties and constraints of the method are discussed.
Keywords: order, complexity, clusterization, surface genius.
Mots-clés : complement
@article{JSFU_2018_11_3_a7,
     author = {Michael G. Sadovsky and Anatoly N. Ostylovsky},
     title = {New method to determine topology of low-dimension manifold approximating multidimensional data sets},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {322--328},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a7/}
}
TY  - JOUR
AU  - Michael G. Sadovsky
AU  - Anatoly N. Ostylovsky
TI  - New method to determine topology of low-dimension manifold approximating multidimensional data sets
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 322
EP  - 328
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a7/
LA  - en
ID  - JSFU_2018_11_3_a7
ER  - 
%0 Journal Article
%A Michael G. Sadovsky
%A Anatoly N. Ostylovsky
%T New method to determine topology of low-dimension manifold approximating multidimensional data sets
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 322-328
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a7/
%G en
%F JSFU_2018_11_3_a7
Michael G. Sadovsky; Anatoly N. Ostylovsky. New method to determine topology of low-dimension manifold approximating multidimensional data sets. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 322-328. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a7/

[1] A.N. Gorban, B.Kégl, D. IIIWünsch , A. Zinovyev (eds.), Principal Manifolds for Data Visualisation and Dimension Reduction, LNCSE, 58, Springer, Berlin–Heidelberg–New York, 2007 | MR

[2] A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis, Lecture Notes in Computational Science and Engineering, Springer, 2010 | MR

[3] A.N. Gorban, I. Yu. Tyukin, D.V. Prokhorov, K.I. Sofeikov, “Approximation with random bases: Pro et Contra”, Information Sciences, 364–365 (2016), 129–145 | DOI

[4] E.M. Mirkes , I. Alexandrakis, K. Slater, R. Tuli, A.N. Gorban, “Computational diagnosis and risk evaluation for canine lymphoma”, Computers in Biology and Medicine, 53 (2014), 279–290 | DOI

[5] J. Leskovec, A. Rajaraman, J.D. Ullman, Mining of massive datasets, Cambridge Univ. Press, 2014 | MR

[6] A. Fahad, Alshatri N., Z. Tari, A. Alamri, I. Khalil, A.Y. Zomaya, S. Foufou, A. Bouras, “A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis”, IEEE Trans. on emerging topics in computing, 2:3 (2014), 267–279 | DOI

[7] Dongkuan Xu, Yingjie Tian, “A Comprehensive Survey of Clustering Algorithms”, Ann. Data. Sci., 2:2 (2015), 165–193 | DOI

[8] M. Girvan, M.E.J. Newman, Community structure in social and biological networks, PNAS, 99:12 (2002), 7821–7826 | DOI | MR | Zbl

[9] A.A. Akinduko, E.M. Mirkes, A.N. Gorban, “SOM: Stochastic initialization versus principal components”, Information Sciences, 364–365 (2016), 213–221 | DOI

[10] M.G. Sadovsky, A.N. Ostylovsky, “New Clusterization Method Based on Graph Connectivity Search”, Journal of Siberian Federal University. Mathematics $\$ Physics, 10:4 (2017), 443–449 | DOI | MR

[11] D. Comaniciu, P. Meer, “Mean shift: A robust approach toward feature space analysis”, IEEE Trans. Pattern Anal. Machine Intell., 24 (2002), 603–619 | DOI

[12] O. Lecarme, K. Delvare, The Book of GIMP: A Complete Guide to Nearly Everything, No Starch Press, 2013

[13] M. Ester, H.-P. Kriegel, J. Sander, X. Xiaowei, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise”, KDD-96 Proceedings, eds. E. Simoudis, J. Han, U. Fayyad, 1996, 226–231

[14] J. Sander, M. Ester, H.-P. Kriegel, X. Xiaowei, “Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications”, Data Mining and Knowledge Discovery, 2:2 (1998), 169–194 | DOI | MR