Study of a logarithmic barrier approach for linear semidefinite programming
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 300-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present a logarithmic barrier interior-point method for solving a semidefinite programming problem. Newton's method is used to compute the descent direction, and minorant function are used as an efficient alternative to line search methods to determine the displacement step along the direction in order to reduce the computation cost.
Keywords: semidefinite programming, interior-point methods, logarithmic barrier methods, line search.
@article{JSFU_2018_11_3_a4,
     author = {Assma Leulmi and Bachir Merikhi and Djamel Benterki},
     title = {Study of a logarithmic barrier approach for linear semidefinite programming},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {300--312},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/}
}
TY  - JOUR
AU  - Assma Leulmi
AU  - Bachir Merikhi
AU  - Djamel Benterki
TI  - Study of a logarithmic barrier approach for linear semidefinite programming
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 300
EP  - 312
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/
LA  - en
ID  - JSFU_2018_11_3_a4
ER  - 
%0 Journal Article
%A Assma Leulmi
%A Bachir Merikhi
%A Djamel Benterki
%T Study of a logarithmic barrier approach for linear semidefinite programming
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 300-312
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/
%G en
%F JSFU_2018_11_3_a4
Assma Leulmi; Bachir Merikhi; Djamel Benterki. Study of a logarithmic barrier approach for linear semidefinite programming. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 300-312. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/

[1] F. Alizadeh, J.P. Haberly, M.L. Overton, “Primal-dual interior-point methods for semidefinite programming, convergence rates, stability and numerical results”, SIAM Journal on Optimization, 8 (1998), 746–768 | DOI | MR | Zbl

[2] D. Benterki, Résolution des problèmes de programmation semidéfinie par des méthodes de réduction du potentiel, Thèse de doctorat, Département de mathématique, Université Ferhat Abbas, Sétif, 2004

[3] D. Benterki, J.P. Crouzeix, B. Merikhi, “A numerical implementation of an interior point method for semidefinite programming”, Pesquisa Operacional Journal, 23:1 (2003)

[4] S. Kettab, D. Benterki, “A relaxed logarithmic barrier method for semidefinite programming”, RAIRO-Operations Research, 49:3 (2015) | Zbl

[5] J.F. Bonnans, J.-C. Gilbert, C. Lemaréchal, C. Sagastizabal, Numerical optimization, theoritical and pratical aspects, Springer-Verlag, 2003 | MR

[6] J.P. Crouzeix, B. Merikhi, “A logarithm barrier method for semidefinite programming”, R.A.I.R.O-Oper. Res., 42 (2008), 123–139 | MR | Zbl

[7] J. Ji, F.A. Potra, R. Sheng, “On the local convergence of a predictorcorrector method for semidefinite programming”, SIAM Journal on Optimization, 10 (1999), 195–210 | DOI | MR | Zbl

[8] T. Kim-Chuan, “Some New Search Directions for Primal-Dual Interior Point Methods in Semidefinite Programming”, SIAM Journal on Optimization, 2000, Aug. | MR

[9] J.P. Crouzeix, A. Seeger, “New bounds for the extreme values of a finite sample of real numbers”, Journal of Mathematical Analysis and Applications, 197 (1996), 411–426 | DOI | MR | Zbl

[10] Y.E. Nesterov, A. Nemirovski, Optimization over positive semidefinite matrices: Mathematical background and user's manual, Technical report, Central economic and mathematical institute, USSR academy of science, Moscow, USSR, 1990

[11] R.T. Rockafellar, Convex analysis, Princeton University Press, New Jerzy, 1970 | MR | Zbl

[12] H. Wolkowicz, G.-P.-H. Styan, “Bounds for eigenvalues using traces”, Linear Algebra and Appl., 29 (1980), 471–506 | DOI | MR | Zbl