Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_3_a4, author = {Assma Leulmi and Bachir Merikhi and Djamel Benterki}, title = {Study of a logarithmic barrier approach for linear semidefinite programming}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {300--312}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/} }
TY - JOUR AU - Assma Leulmi AU - Bachir Merikhi AU - Djamel Benterki TI - Study of a logarithmic barrier approach for linear semidefinite programming JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 300 EP - 312 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/ LA - en ID - JSFU_2018_11_3_a4 ER -
%0 Journal Article %A Assma Leulmi %A Bachir Merikhi %A Djamel Benterki %T Study of a logarithmic barrier approach for linear semidefinite programming %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 300-312 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/ %G en %F JSFU_2018_11_3_a4
Assma Leulmi; Bachir Merikhi; Djamel Benterki. Study of a logarithmic barrier approach for linear semidefinite programming. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 300-312. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a4/
[1] F. Alizadeh, J.P. Haberly, M.L. Overton, “Primal-dual interior-point methods for semidefinite programming, convergence rates, stability and numerical results”, SIAM Journal on Optimization, 8 (1998), 746–768 | DOI | MR | Zbl
[2] D. Benterki, Résolution des problèmes de programmation semidéfinie par des méthodes de réduction du potentiel, Thèse de doctorat, Département de mathématique, Université Ferhat Abbas, Sétif, 2004
[3] D. Benterki, J.P. Crouzeix, B. Merikhi, “A numerical implementation of an interior point method for semidefinite programming”, Pesquisa Operacional Journal, 23:1 (2003)
[4] S. Kettab, D. Benterki, “A relaxed logarithmic barrier method for semidefinite programming”, RAIRO-Operations Research, 49:3 (2015) | Zbl
[5] J.F. Bonnans, J.-C. Gilbert, C. Lemaréchal, C. Sagastizabal, Numerical optimization, theoritical and pratical aspects, Springer-Verlag, 2003 | MR
[6] J.P. Crouzeix, B. Merikhi, “A logarithm barrier method for semidefinite programming”, R.A.I.R.O-Oper. Res., 42 (2008), 123–139 | MR | Zbl
[7] J. Ji, F.A. Potra, R. Sheng, “On the local convergence of a predictorcorrector method for semidefinite programming”, SIAM Journal on Optimization, 10 (1999), 195–210 | DOI | MR | Zbl
[8] T. Kim-Chuan, “Some New Search Directions for Primal-Dual Interior Point Methods in Semidefinite Programming”, SIAM Journal on Optimization, 2000, Aug. | MR
[9] J.P. Crouzeix, A. Seeger, “New bounds for the extreme values of a finite sample of real numbers”, Journal of Mathematical Analysis and Applications, 197 (1996), 411–426 | DOI | MR | Zbl
[10] Y.E. Nesterov, A. Nemirovski, Optimization over positive semidefinite matrices: Mathematical background and user's manual, Technical report, Central economic and mathematical institute, USSR academy of science, Moscow, USSR, 1990
[11] R.T. Rockafellar, Convex analysis, Princeton University Press, New Jerzy, 1970 | MR | Zbl
[12] H. Wolkowicz, G.-P.-H. Styan, “Bounds for eigenvalues using traces”, Linear Algebra and Appl., 29 (1980), 471–506 | DOI | MR | Zbl