Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 383-396
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, using S.L. Sobolev's method, interpolation splines that minimize the expression $\int_0^1(\varphi^{(m)}(x)+\omega^2\varphi^{(m-2)}(x))^2dx$ in the space $K_2(P_m)$ are constructed. Explicit formulas for the coefficients of the interpolation splines are obtained. The obtained interpolation splines are exact for monomials $1,x,x^2,\dots, x^{m-3}$ and for trigonometric functions $\sin\omega x$ and $\cos\omega x$.
Keywords:
Hilbert space, norm minimizing property, Sobolev's method, discrete argument function.
Mots-clés : interpolation spline
Mots-clés : interpolation spline
@article{JSFU_2018_11_3_a14,
author = {Abdullo R. Hayotov},
title = {Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {383--396},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/}
}
TY - JOUR AU - Abdullo R. Hayotov TI - Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 383 EP - 396 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/ LA - en ID - JSFU_2018_11_3_a14 ER -
%0 Journal Article %A Abdullo R. Hayotov %T Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 383-396 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/ %G en %F JSFU_2018_11_3_a14
Abdullo R. Hayotov. Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 383-396. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/