Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 383-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, using S.L. Sobolev's method, interpolation splines that minimize the expression $\int_0^1(\varphi^{(m)}(x)+\omega^2\varphi^{(m-2)}(x))^2dx$ in the space $K_2(P_m)$ are constructed. Explicit formulas for the coefficients of the interpolation splines are obtained. The obtained interpolation splines are exact for monomials $1,x,x^2,\dots, x^{m-3}$ and for trigonometric functions $\sin\omega x$ and $\cos\omega x$.
Keywords: Hilbert space, norm minimizing property, Sobolev's method, discrete argument function.
Mots-clés : interpolation spline
@article{JSFU_2018_11_3_a14,
     author = {Abdullo R. Hayotov},
     title = {Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {383--396},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/}
}
TY  - JOUR
AU  - Abdullo R. Hayotov
TI  - Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 383
EP  - 396
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/
LA  - en
ID  - JSFU_2018_11_3_a14
ER  - 
%0 Journal Article
%A Abdullo R. Hayotov
%T Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 383-396
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/
%G en
%F JSFU_2018_11_3_a14
Abdullo R. Hayotov. Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 383-396. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/

[1] J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The theory of splines and their applications, Mathematics in Science and Engineering, Academic Press, New York, 1967 | MR | Zbl

[2] R. Arcangeli, M.C. Lopez de Silanes, J.J. Torrens, Multidimensional minimizing splines, Kluwer Academic publishers, Boston, 2004 | MR | Zbl

[3] M. Attea, Hilbertian kernels and spline functions, Studies in Computational Matematics, 4, eds. C. Brezinski, L. Wuytack, North-Holland, 1992 | MR

[4] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer, Dordrecht, 2004 | MR | Zbl

[5] B.D. Bojanov, H.A. Hakopian, A.A. Sahakian, Spline functions and multivariate interpolations, Kluwer, Dordrecht, 1993 | MR | Zbl

[6] C. de Boor, “Best approximation properties of spline functions of odd degree”, J. Math. Mech., 12 (1963), 747–749 | MR | Zbl

[7] C. de Boor, A practical guide to splines, Springer-Verlag, 1978 | MR | Zbl

[8] A. Cabada, A.R. Hayotov, Kh.M. Shadimetov, “Construction of $D^m$-splines in $L_2^{(m)}(0,1)$ space by Sobolev method”, Applied Mathematics and Computation, 244 (2014), 542–551 | DOI | MR | Zbl

[9] J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, 571, 1977, 85–100 | DOI | MR | Zbl

[10] R.L. Eubank, Spline smoothing and nonparametric regression, Marcel-Dekker, New-York, 1988 | MR | Zbl

[11] W. Freeden, “Spherical spline interpolation-basic theory and computational aspects”, Journal of Computational and Applied Mathematics, 1 (1984), 367–375 | DOI | MR

[12] W. Freeden, “Interpolation by multidimensional periodic splines”, Journal of Approximation Theory, 55 (1988), 104–117 | DOI | MR | Zbl

[13] P.J. Green, B.W. Silverman, Nonparametric regression and generalized linear models. A roughness penalty approach, Chapman and Hall, London, 1994 | MR | Zbl

[14] M. Golomb, “Approximation by periodic spline interpolants on uniform meshes”, Journal of Approximation Theory, 1 (1968), 26–65 | DOI | MR | Zbl

[15] R.W. Hamming, Numerical Methods for Scientists and Engineers, Second edition, McGraw-Hill, New York, 1973 | MR | Zbl

[16] A.R. Hayotov, The discrete analogue of the differential operator $ \frac{d^{2m}}{d x^{2m}}+2\omega^2\frac{d^{2m-2}}{d x^{2m-2}}+ 2\omega^4\frac{d^{2m-4}}{d x^{2m-4}}$, 25 October 2013, arXiv: 1310.6831v1 [math.NA] | MR

[17] A.R. Hayotov, “The discrete analogue of a differential operator and its applications”, Lithuanian Mathematical Journal, 54:3 (2014), 290–307 | DOI | MR | Zbl

[18] A.R. Hayotov, G.V. Milovanović, Kh.M. Shadimetov, “Interpolation splines minimizing a semi-norm”, Calcolo, 51:2 (2014), 245–260 | DOI | MR | Zbl

[19] A.R. Hayotov, G.V. Milovanović, Kh.M. Shadimetov, “Optimal quadrature fromulas and interpolation splines minimizing the semi-norm in the Hilbert space $K_2(P_2)$”, Analytic Number Theory, Approximation Theory, and Special Functions, eds. G.V. Milovanović, M.Th. Rassias, 2014, 572–611 | DOI | MR

[20] J.C. Holladay, “Smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 223–243 | DOI | MR

[21] M.I. Ignatev, A.B. Pevniy, Natural splines of many variables, Nauka, Leningrad, 1991 (in Russian) | MR

[22] P.Köhler, “On the weights of Sard's quadrature formulas”, Calcolo, 25 (1988), 169–186 | DOI | MR | Zbl

[23] N.P. Korneichuk, V.F. Babenko, A.A. Ligun, Extremal properties of polynomials and splines, Naukova dumka, Kiev, 1992 (in Russian) | MR

[24] P.-J. Laurent, Approximation and Optimization, Mir, M., 1975 (in Russian)

[25] N.H. Mamatova, A.R. Hayotov, Kh.M. Shadimetov, “Construction of lattice optimal interpolation formulas in Sobolev space of $n$ variable periodic functions by Sobolev method”, Ufa Matematical Journal, 5:1 (2013), 90–101 | DOI | MR

[26] G. Mastroianni, G.V. Milovanović, Interpolation Processes – Basic Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2008 | DOI | MR | Zbl

[27] G. Nürnberger, Approximation by Spline Functions, Springer, Berlin, 1989 | MR | Zbl

[28] I.J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech., 13 (1964), 795–825 | MR | Zbl

[29] L.L. Schumaker, Spline functions: basic theory, J. Wiley, New-York, 1981 | MR | Zbl

[30] Kh.M. Shadimetov, Optimal formulas of approximate integration for differentiable functions, Candidate dissertation, Novosibirsk, 1983, arXiv: (in Russian) 1005.0163v1 [math.NA]

[31] Kh.M. Shadimetov, A.R. Hayotov, “Construction of interpolation splines minimizing semi-norm in $W^{(m,m-1)}_2(0,1)$ space”, BIT Numer Math., 53:2 (2013), 545–563 | MR | Zbl

[32] Kh.M. Shadimetov, A.R. Hayotov, S.S. Azamov, “Interpolation splines minimizing semi-norm in$K_2(P_2)$ space”, American Journal of Numerical Analysis, 2:4 (2014), 107–114 | MR

[33] S.L. Sobolev, “The coefficients of optimal quadrature formulas”, Selected Works of S. L. Sobolev, Springer, 2006, 561–566 | DOI | MR

[34] S.L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, M., 1974 (in Russian) | MR

[35] S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl

[36] S.B. Stechkin, Yu.N. Subbotin, Splines in computational mathematics, Nauka, M., 1976 (in Russian) | MR

[37] V.A. Vasilenko, Spline functions: Theory, Algorithms, Programs, Nauka, Novosibirsk, 1983 (in Russian) | MR | Zbl

[38] G. Wahba, Spline models for observational data, CBMS, 59, SIAM, Philadelphia, 1990 | MR | Zbl