Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_3_a14, author = {Abdullo R. Hayotov}, title = {Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {383--396}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/} }
TY - JOUR AU - Abdullo R. Hayotov TI - Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 383 EP - 396 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/ LA - en ID - JSFU_2018_11_3_a14 ER -
%0 Journal Article %A Abdullo R. Hayotov %T Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 383-396 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/ %G en %F JSFU_2018_11_3_a14
Abdullo R. Hayotov. Construction of interpolation splines minimizing the semi-norm in the space $K_2(P_m)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 383-396. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a14/
[1] J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The theory of splines and their applications, Mathematics in Science and Engineering, Academic Press, New York, 1967 | MR | Zbl
[2] R. Arcangeli, M.C. Lopez de Silanes, J.J. Torrens, Multidimensional minimizing splines, Kluwer Academic publishers, Boston, 2004 | MR | Zbl
[3] M. Attea, Hilbertian kernels and spline functions, Studies in Computational Matematics, 4, eds. C. Brezinski, L. Wuytack, North-Holland, 1992 | MR
[4] A. Berlinet, C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, Kluwer, Dordrecht, 2004 | MR | Zbl
[5] B.D. Bojanov, H.A. Hakopian, A.A. Sahakian, Spline functions and multivariate interpolations, Kluwer, Dordrecht, 1993 | MR | Zbl
[6] C. de Boor, “Best approximation properties of spline functions of odd degree”, J. Math. Mech., 12 (1963), 747–749 | MR | Zbl
[7] C. de Boor, A practical guide to splines, Springer-Verlag, 1978 | MR | Zbl
[8] A. Cabada, A.R. Hayotov, Kh.M. Shadimetov, “Construction of $D^m$-splines in $L_2^{(m)}(0,1)$ space by Sobolev method”, Applied Mathematics and Computation, 244 (2014), 542–551 | DOI | MR | Zbl
[9] J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, 571, 1977, 85–100 | DOI | MR | Zbl
[10] R.L. Eubank, Spline smoothing and nonparametric regression, Marcel-Dekker, New-York, 1988 | MR | Zbl
[11] W. Freeden, “Spherical spline interpolation-basic theory and computational aspects”, Journal of Computational and Applied Mathematics, 1 (1984), 367–375 | DOI | MR
[12] W. Freeden, “Interpolation by multidimensional periodic splines”, Journal of Approximation Theory, 55 (1988), 104–117 | DOI | MR | Zbl
[13] P.J. Green, B.W. Silverman, Nonparametric regression and generalized linear models. A roughness penalty approach, Chapman and Hall, London, 1994 | MR | Zbl
[14] M. Golomb, “Approximation by periodic spline interpolants on uniform meshes”, Journal of Approximation Theory, 1 (1968), 26–65 | DOI | MR | Zbl
[15] R.W. Hamming, Numerical Methods for Scientists and Engineers, Second edition, McGraw-Hill, New York, 1973 | MR | Zbl
[16] A.R. Hayotov, The discrete analogue of the differential operator $ \frac{d^{2m}}{d x^{2m}}+2\omega^2\frac{d^{2m-2}}{d x^{2m-2}}+ 2\omega^4\frac{d^{2m-4}}{d x^{2m-4}}$, 25 October 2013, arXiv: 1310.6831v1 [math.NA] | MR
[17] A.R. Hayotov, “The discrete analogue of a differential operator and its applications”, Lithuanian Mathematical Journal, 54:3 (2014), 290–307 | DOI | MR | Zbl
[18] A.R. Hayotov, G.V. Milovanović, Kh.M. Shadimetov, “Interpolation splines minimizing a semi-norm”, Calcolo, 51:2 (2014), 245–260 | DOI | MR | Zbl
[19] A.R. Hayotov, G.V. Milovanović, Kh.M. Shadimetov, “Optimal quadrature fromulas and interpolation splines minimizing the semi-norm in the Hilbert space $K_2(P_2)$”, Analytic Number Theory, Approximation Theory, and Special Functions, eds. G.V. Milovanović, M.Th. Rassias, 2014, 572–611 | DOI | MR
[20] J.C. Holladay, “Smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 223–243 | DOI | MR
[21] M.I. Ignatev, A.B. Pevniy, Natural splines of many variables, Nauka, Leningrad, 1991 (in Russian) | MR
[22] P.Köhler, “On the weights of Sard's quadrature formulas”, Calcolo, 25 (1988), 169–186 | DOI | MR | Zbl
[23] N.P. Korneichuk, V.F. Babenko, A.A. Ligun, Extremal properties of polynomials and splines, Naukova dumka, Kiev, 1992 (in Russian) | MR
[24] P.-J. Laurent, Approximation and Optimization, Mir, M., 1975 (in Russian)
[25] N.H. Mamatova, A.R. Hayotov, Kh.M. Shadimetov, “Construction of lattice optimal interpolation formulas in Sobolev space of $n$ variable periodic functions by Sobolev method”, Ufa Matematical Journal, 5:1 (2013), 90–101 | DOI | MR
[26] G. Mastroianni, G.V. Milovanović, Interpolation Processes – Basic Theory and Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2008 | DOI | MR | Zbl
[27] G. Nürnberger, Approximation by Spline Functions, Springer, Berlin, 1989 | MR | Zbl
[28] I.J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech., 13 (1964), 795–825 | MR | Zbl
[29] L.L. Schumaker, Spline functions: basic theory, J. Wiley, New-York, 1981 | MR | Zbl
[30] Kh.M. Shadimetov, Optimal formulas of approximate integration for differentiable functions, Candidate dissertation, Novosibirsk, 1983, arXiv: (in Russian) 1005.0163v1 [math.NA]
[31] Kh.M. Shadimetov, A.R. Hayotov, “Construction of interpolation splines minimizing semi-norm in $W^{(m,m-1)}_2(0,1)$ space”, BIT Numer Math., 53:2 (2013), 545–563 | MR | Zbl
[32] Kh.M. Shadimetov, A.R. Hayotov, S.S. Azamov, “Interpolation splines minimizing semi-norm in$K_2(P_2)$ space”, American Journal of Numerical Analysis, 2:4 (2014), 107–114 | MR
[33] S.L. Sobolev, “The coefficients of optimal quadrature formulas”, Selected Works of S. L. Sobolev, Springer, 2006, 561–566 | DOI | MR
[34] S.L. Sobolev, Introduction to the Theory of Cubature Formulas, Nauka, M., 1974 (in Russian) | MR
[35] S.L. Sobolev, V.L. Vaskevich, The Theory of Cubature Formulas, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl
[36] S.B. Stechkin, Yu.N. Subbotin, Splines in computational mathematics, Nauka, M., 1976 (in Russian) | MR
[37] V.A. Vasilenko, Spline functions: Theory, Algorithms, Programs, Nauka, Novosibirsk, 1983 (in Russian) | MR | Zbl
[38] G. Wahba, Spline models for observational data, CBMS, 59, SIAM, Philadelphia, 1990 | MR | Zbl