@article{JSFU_2018_11_3_a12,
author = {Georgy P. Egorychev and Viachelsav P. Krivokolesko},
title = {Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the {Mellin} transform},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {364--369},
year = {2018},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/}
}
TY - JOUR
AU - Georgy P. Egorychev
AU - Viachelsav P. Krivokolesko
TI - Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the Mellin transform
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2018
SP - 364
EP - 369
VL - 11
IS - 3
UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/
LA - en
ID - JSFU_2018_11_3_a12
ER -
%0 Journal Article
%A Georgy P. Egorychev
%A Viachelsav P. Krivokolesko
%T Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the Mellin transform
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 364-369
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/
%G en
%F JSFU_2018_11_3_a12
Georgy P. Egorychev; Viachelsav P. Krivokolesko. Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the Mellin transform. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 364-369. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/
[1] V.P. Krivokolesko, “Integral representations for linearly convex polyhedra and some combinatorial identities”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009), 176–188 (in Russian)
[2] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Mathematics, 151 (2000), 45–70 | DOI | MR | Zbl
[3] V.P. Krivokolesko, “Method for Obtaining Sombinatorial Identities with Polynomial Coefficients by the Means of Integral Representations”, J. Sib. Fed. Univ. Math. Phys., 9:2 (2016), 192–201 | DOI | MR
[4] G.P. Egorychev, Integral representation and the computation of combinatorial sums, Transl. of Math. Monogr., 59, Amer. Math. Soc., Providence, RI, 1984 ; 2-nd Ed., 1989 | DOI | MR | Zbl
[5] G.P. Egorychev, E.V. Zima, Handbook of Algebra, ed. M. Hazewinkel, Elsevier, Integral representation and algorithms for closed form summation | MR