Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_3_a12, author = {Georgy P. Egorychev and Viachelsav P. Krivokolesko}, title = {Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the {Mellin} transform}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {364--369}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/} }
TY - JOUR AU - Georgy P. Egorychev AU - Viachelsav P. Krivokolesko TI - Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the Mellin transform JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 364 EP - 369 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/ LA - en ID - JSFU_2018_11_3_a12 ER -
%0 Journal Article %A Georgy P. Egorychev %A Viachelsav P. Krivokolesko %T Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the Mellin transform %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 364-369 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/ %G en %F JSFU_2018_11_3_a12
Georgy P. Egorychev; Viachelsav P. Krivokolesko. Computation of an integral of a rational function over the skeleton of unit polycylinder in $\mathbb C^{n}$ by means of the Mellin transform. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 3, pp. 364-369. http://geodesic.mathdoc.fr/item/JSFU_2018_11_3_a12/
[1] V.P. Krivokolesko, “Integral representations for linearly convex polyhedra and some combinatorial identities”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009), 176–188 (in Russian)
[2] M. Forsberg, M. Passare, A. Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Mathematics, 151 (2000), 45–70 | DOI | MR | Zbl
[3] V.P. Krivokolesko, “Method for Obtaining Sombinatorial Identities with Polynomial Coefficients by the Means of Integral Representations”, J. Sib. Fed. Univ. Math. Phys., 9:2 (2016), 192–201 | DOI | MR
[4] G.P. Egorychev, Integral representation and the computation of combinatorial sums, Transl. of Math. Monogr., 59, Amer. Math. Soc., Providence, RI, 1984 ; 2-nd Ed., 1989 | DOI | MR | Zbl
[5] G.P. Egorychev, E.V. Zima, Handbook of Algebra, ed. M. Hazewinkel, Elsevier, Integral representation and algorithms for closed form summation | MR