Strongly algebraically closed lattices in $\ell$-groups and semilattices
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 258-263

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, the properties of being $\aleph_0$-classes of a full $\ell$-group, the set of polars of an $\ell$-group, the complemented $\ell$-ideals of a complete $\ell$-group, the set of invariant elements of a dimension ortholattice, and pseudocomplemented semilattices are studied from the perspective of model theory and their relations to strongly algebraically closed lattices are obtained.
Keywords: strongly algebraically closed lattices, $\ell$-groups, pseudocomplemented semilattices.
@article{JSFU_2018_11_2_a15,
     author = {Ali Molkhasi},
     title = {Strongly algebraically closed lattices in $\ell$-groups and semilattices},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {258--263},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/}
}
TY  - JOUR
AU  - Ali Molkhasi
TI  - Strongly algebraically closed lattices in $\ell$-groups and semilattices
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 258
EP  - 263
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/
LA  - en
ID  - JSFU_2018_11_2_a15
ER  - 
%0 Journal Article
%A Ali Molkhasi
%T Strongly algebraically closed lattices in $\ell$-groups and semilattices
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 258-263
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/
%G en
%F JSFU_2018_11_2_a15
Ali Molkhasi. Strongly algebraically closed lattices in $\ell$-groups and semilattices. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 258-263. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/