Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_2_a15, author = {Ali Molkhasi}, title = {Strongly algebraically closed lattices in $\ell$-groups and semilattices}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {258--263}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/} }
TY - JOUR AU - Ali Molkhasi TI - Strongly algebraically closed lattices in $\ell$-groups and semilattices JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 258 EP - 263 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/ LA - en ID - JSFU_2018_11_2_a15 ER -
%0 Journal Article %A Ali Molkhasi %T Strongly algebraically closed lattices in $\ell$-groups and semilattices %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 258-263 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/ %G en %F JSFU_2018_11_2_a15
Ali Molkhasi. Strongly algebraically closed lattices in $\ell$-groups and semilattices. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 258-263. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a15/
[1] G.Birkhoff, Lattice theory, American Mathematical Society Colloquium Publications, 25, 3rd ed., American Mathematical Society, New York, 1967 | MR | Zbl
[2] E.Daniyarova, A.Myasnikov, V.Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathamatics, 2008, 80–112 | MR
[3] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic structures, II: Fundations, arXiv: 1002.3562v2 [math.AG] | MR
[4] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic structures, III: Equationally Noetherian property and compactness, arXiv: 1002.4243v2 [math.AG] | MR
[5] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains, preprint, 2012 | MR
[6] A.Fernandez Lopez, M.I.Tocon Barroso, “Pseudocomplemented semilattices, Boolean algebras, and compatible products 1”, Journal of algebra, 242 (2001), 60–91 | DOI | MR | Zbl
[7] S.Givant, P.Halmos, Introduction to Boolean algebras, Springer Science $+$ Business Media, New York, 2009 | MR | Zbl
[8] G.Higman, E.L.Scott, Existentially closed groups, Clarendon Press, 1988 | MR | Zbl
[9] W.Hodges, Model theory, University Press, Cambridge, 1993 | MR | Zbl
[10] A.Molkhasi, “On strongly algebraically closed lattices”, Journal of Siberian Federal University, Mathematics and Physics, 9:2 (2016), 202–208 | DOI | MR
[11] R.Sikorski, Boolean algebras, Springer-Verlag, Berlin etc., 1964 | MR | Zbl
[12] J.Schmid, “Algebraically and existentially closed distributive lattices”, Zeilschr. Math. Logik und Grundlagen d. Math. Bd., 25 (1979), 525–530 | DOI | MR | Zbl
[13] D.A.Vladimirov, Boolean algebras, Nauka, M., 1969 (in Russian) | MR
[14] L.J.M.Waaijers, On the structure of lattice ordered groups, Waltman, 1968 | MR