Mathematical modeling of plastic deformation in FCC metals
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 242-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study was made of the number of dislocations change in the crystallographic shift zone for fcc metals: lead, aluminum and copper, depending on the magnitude of the acting stress and other factors affecting the formation of the shear zone, using a mathematical model that takes into account the influence of the basic resistance mechanisms to the propagation of a dislocation loop.
Keywords: plastic deformation, dislocation, crystallographic slip, shear zone, fcc materials, mathematical modeling.
@article{JSFU_2018_11_2_a13,
     author = {Svetlana N. Kolupaeva and Alexander E. Petelin and Valeriy I. Ryumkin},
     title = {Mathematical modeling of plastic deformation in {FCC} metals},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {242--248},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a13/}
}
TY  - JOUR
AU  - Svetlana N. Kolupaeva
AU  - Alexander E. Petelin
AU  - Valeriy I. Ryumkin
TI  - Mathematical modeling of plastic deformation in FCC metals
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 242
EP  - 248
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a13/
LA  - en
ID  - JSFU_2018_11_2_a13
ER  - 
%0 Journal Article
%A Svetlana N. Kolupaeva
%A Alexander E. Petelin
%A Valeriy I. Ryumkin
%T Mathematical modeling of plastic deformation in FCC metals
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 242-248
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a13/
%G en
%F JSFU_2018_11_2_a13
Svetlana N. Kolupaeva; Alexander E. Petelin; Valeriy I. Ryumkin. Mathematical modeling of plastic deformation in FCC metals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 242-248. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a13/

[1] L.E.Popov, M.I.Slobodskoi, S.I.Kolupaeva, “Simulation of single slip in FCC metals”, Russian physics journal, 49:1 (2006), 62–73 | DOI

[2] J.Hirth, J.Lothe, Theory of Dislocations, McGraw-Hill, New York, 1968 | MR

[3] A.J.E.Foreman, M.J.Makin, “Dilocation Movement through Random Arrays of Obstacles”, Can. J. Phys., 45:2 (1967), 511–517 | DOI

[4] A.S.Argon, “Thermally activated motion of dislocation”, Phil. Mag.: J. Theor. Exper. and Appl. Phys., 25:5 (1972), 1053–1072

[5] J.W.Morris, D.H.Klahn, “Thermally activated dislocation glide through a random array of point obstacles: Computer simulation”, J. Appl. Phys., 45:5 (1974), 2027–2036 | DOI

[6] R.Labusch, R.W.Schwars, “Movement of dislocations through a random of weak obstacles of finite width”, Nuclear Metallurgy, 20 (1976), 657–671

[7] B.M.Loginov, A.A.Predvoditelev, “Modeling the motion of dislocations through a forest of flexible and reactive dislocations”, Fizika Tverdogo Tela, 23:1 (1981), 112–116 (in Russian)

[8] M.I.Slobodskoi, L.E.Popov, Investigation of the sliding phenomena in crystals by methods of simulation, TSUAB, Tomsk, 2004 (in Russian)

[9] M.I.Slobodskoi, L.E.Popov, “Features of the Frank-Read source work in a field of randomly located obstacles”, Bulliten Ros. Akad. Nauk. Fizika, 62:7 (1998), 1339–1344 (in Russian)

[10] N.F.Mott, “A theory of work-hardering of metal crystals”, Phil. Mag.: J. Theor. Exper. and Appl. Phys., 43:346 (1952), 1151–1178

[11] V.D.Natsik, K.A.Chishko K.A., “Dynamics and sound radiation of the Frank-Read dislocation source”, Condensed Matter Physics: Collected Works of the Physico-Technical Institute of Low Temperatures of the Academy of Sciences of the Ukrainian SSR, 33 (1974), 44–57 (in Russian)

[12] N.A.Tyapunina, E.K.Naimi, G.M.Zinenkova, The effect of ultrasound on crystals with defects, Moscow State University, M., 1999 (in Russian)

[13] L.E.Popov, S.N.Kolupaeva, N.A.Vihor, S.I.Puspesheva, “Dislocation dynamics of elementary crystallographic shear”, Computational Materials Science, 19 (2000), 267–274 | DOI

[14] A.E.Petelin, S.N.Kolupaeva, “Automation of the crystallographic slip study in FCC metals”, Trudy Tomskogo Politeh. Univer., 316:5 (2010), 141–146 (in Russian)

[15] A.E.Petelin, S.I.Samokhina, S.N.Kolupaeva, “Mathematical Model of the Formation of a Crystallographic Shear Band in FCC Metals Taking Account for Elastic Interaction of Dislocations”, Russian Physics Journal, 56:8 (2013), 953-958 | DOI

[16] S.N.Kolupaeva, A.E.Petelin, Yu.P.Petelina, K.A.Polosukhin, “Investigation of the Dynamics of a Screw Dislocation in Copper”, Russian Physics Journal, 58:4 (2015), 461-464 | DOI