Conditional correctness and approximate solution of boundary value problem for the system of second order mixed-type equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 231-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the system of second-order mixed type equations. Theorems of uniqueness and conditional stability in the set of correctness are proven. The approximate solution is constructed by the method of regularization and by the quasi-inverse method.
Keywords: system of equations, boundary value problem, ill-posed problem, a priori estimate, theorem of the uniqueness, conditional stability, set of correctness, approximate solution, regularization.
@article{JSFU_2018_11_2_a12,
     author = {Ikrombek O. Khajiev},
     title = {Conditional correctness and approximate solution of boundary value problem for the system of second order mixed-type equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a12/}
}
TY  - JOUR
AU  - Ikrombek O. Khajiev
TI  - Conditional correctness and approximate solution of boundary value problem for the system of second order mixed-type equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 231
EP  - 241
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a12/
LA  - en
ID  - JSFU_2018_11_2_a12
ER  - 
%0 Journal Article
%A Ikrombek O. Khajiev
%T Conditional correctness and approximate solution of boundary value problem for the system of second order mixed-type equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 231-241
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a12/
%G en
%F JSFU_2018_11_2_a12
Ikrombek O. Khajiev. Conditional correctness and approximate solution of boundary value problem for the system of second order mixed-type equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a12/

[1] K.B.Sabitov, On the theory of mixed type equations, Fizmatlit, M., 2014 (in Russian)

[2] M.S.Salakhitdinov, A.K. Urinov, Spectral theory of mixed type equations, FAN, Tashkent, 2010 (in Russian)

[3] A.G.Kuzmin, Nonclassical equation of mixed type and their applications in gas dynamics, Leningrad. Gos. Univer., 1990 (in Russian) | MR

[4] N.A.Larkin, V.A.Novikov, N.N.Yanenko, Nonlinear equation of variable type, Novosibirsk, 1983 (in Russian) | MR

[5] I.E.Egorov, V.E.Fedorov, I.M. Tikhonova, “Modified Galerkin method for the second order equation of mixed type and estimate of its error”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:4 (2016), 30–39

[6] S.G.Pyatkov, N.L.Abasheieva, “Solvability of boundary value problems for operator-differential equations of mixed type”, Sib. Mat. J., 41:6 (2000), 1174–1187 | DOI | MR | Zbl

[7] S.A.Tersenov, Parabolic equations with a varying direction of time, Novosibirsk, 1985 (in Russian) | MR

[8] H.A.Levine, “Logarithmic Convexity and the Cauchy Problem for some Abstract Second order Differential Inequalities”, Journal of Dif. Equations, 8 (1970), 34–55 | DOI | MR | Zbl

[9] K.S.Fayazov, “An ill-posed boundary-value problem for a second-order mixed-type equation”, Uzbek. Mat. Zh., 2 (1995), 89–93 (in Russian) | MR

[10] K.S.Fayazov, I.O.Khajiev, “Conditional correctness of boundary-value problem for a composite fourth-order differential equation”, Russian Mathematics, 4 (2015), 65–75 | MR

[11] K.S.Fayazov, I.O.Khajiev, “Boundary value problem for the system equations mixed type”, Universal Journal of Computational Mathematics, 4:4 (2016), 61–66 | MR

[12] S.G.Pyatkov, “Properties of eigenfunctions of a certain spectral problem and their applications”, Some Applications of Functional Analysis to Equations of Mathematical Physics, Inst. Mat. SO RAN, Novosibirsk, 1986, 65–84 (in Russian) | MR