An algorithmic implementation of Runge's method for cubic diophantine equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 137-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose an algorithmic implementation of the elementary version of Runge's method for solving cubic diophantine equations with two unknowns. Moreover, we give the estimates for the solutions to such equations.
Keywords: Runge's method.
Mots-clés : diophantine equations
@article{JSFU_2018_11_2_a1,
     author = {Nikolay N. Osipov and Bella V. Gulnova},
     title = {An algorithmic implementation of {Runge's} method for cubic diophantine equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {137--147},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/}
}
TY  - JOUR
AU  - Nikolay N. Osipov
AU  - Bella V. Gulnova
TI  - An algorithmic implementation of Runge's method for cubic diophantine equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 137
EP  - 147
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/
LA  - en
ID  - JSFU_2018_11_2_a1
ER  - 
%0 Journal Article
%A Nikolay N. Osipov
%A Bella V. Gulnova
%T An algorithmic implementation of Runge's method for cubic diophantine equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 137-147
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/
%G en
%F JSFU_2018_11_2_a1
Nikolay N. Osipov; Bella V. Gulnova. An algorithmic implementation of Runge's method for cubic diophantine equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/

[1] E.J.Barbeau, Pell's equation, Springer-Verlag, New York, 2003 | MR | Zbl

[2] D.L. Hilliker, “An algorithm for solving a certain class of diophantine equations. I”, Math. Comput., 38 (1982), 611–626 | DOI | MR | Zbl

[3] D.L.Hilliker, E.G.Straus, “Determination of bounds for the solutions to those binary diophantine equations that satisfy the hypotheses of Runge's theorem”, Trans. Amer. Math. Soc., 280 (1983), 637–657 | MR | Zbl

[4] L.J.Mordell, Diophantine equations, Academic Press Inc., London, 1969 | MR | Zbl

[5] N.N.Osipov, “The elementary version of Runge's method for cubic equations”, Matmatika v Shkole, 1 (2012), 64–69 (in Russian)

[6] N.N.Osipov, “Runge's method for the equations of fourth degree: an elementary approach”, Matematicheskoe Prosveshchenie, Ser. 3, 19, MCCME, M., 2015, 178–198 (in Russian)

[7] D.Poulakis, “Polynomial bounds for the solutions of a class of diophantine equations”, J. Number Theory, 66 (1997), 271–281 | DOI | MR | Zbl

[8] D.Poulakis, “A simple method for solving the diophantine equation $Y^2=X^4+aX^3+bX^2+$ $+cX+d$”, Elem. Math., 54 (1999), 32–36 | DOI | MR | Zbl

[9] V.G.Sprindz̆uk, Classical Diophantine Equations, Springer-Verlag, New York, 1993 | MR | Zbl

[10] C.Runge, “Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen”, J. reine und angew. Math., 100 (1887), 425–435 | MR | Zbl

[11] P.G.Walsh, “A quantitative version of Runge's theorem on diophantine equations”, Acta Arithmetica, LXII (1992), 157–172 | DOI | MR | Zbl