Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_2_a1, author = {Nikolay N. Osipov and Bella V. Gulnova}, title = {An algorithmic implementation of {Runge's} method for cubic diophantine equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {137--147}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/} }
TY - JOUR AU - Nikolay N. Osipov AU - Bella V. Gulnova TI - An algorithmic implementation of Runge's method for cubic diophantine equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 137 EP - 147 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/ LA - en ID - JSFU_2018_11_2_a1 ER -
%0 Journal Article %A Nikolay N. Osipov %A Bella V. Gulnova %T An algorithmic implementation of Runge's method for cubic diophantine equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 137-147 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/ %G en %F JSFU_2018_11_2_a1
Nikolay N. Osipov; Bella V. Gulnova. An algorithmic implementation of Runge's method for cubic diophantine equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 137-147. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a1/
[1] E.J.Barbeau, Pell's equation, Springer-Verlag, New York, 2003 | MR | Zbl
[2] D.L. Hilliker, “An algorithm for solving a certain class of diophantine equations. I”, Math. Comput., 38 (1982), 611–626 | DOI | MR | Zbl
[3] D.L.Hilliker, E.G.Straus, “Determination of bounds for the solutions to those binary diophantine equations that satisfy the hypotheses of Runge's theorem”, Trans. Amer. Math. Soc., 280 (1983), 637–657 | MR | Zbl
[4] L.J.Mordell, Diophantine equations, Academic Press Inc., London, 1969 | MR | Zbl
[5] N.N.Osipov, “The elementary version of Runge's method for cubic equations”, Matmatika v Shkole, 1 (2012), 64–69 (in Russian)
[6] N.N.Osipov, “Runge's method for the equations of fourth degree: an elementary approach”, Matematicheskoe Prosveshchenie, Ser. 3, 19, MCCME, M., 2015, 178–198 (in Russian)
[7] D.Poulakis, “Polynomial bounds for the solutions of a class of diophantine equations”, J. Number Theory, 66 (1997), 271–281 | DOI | MR | Zbl
[8] D.Poulakis, “A simple method for solving the diophantine equation $Y^2=X^4+aX^3+bX^2+$ $+cX+d$”, Elem. Math., 54 (1999), 32–36 | DOI | MR | Zbl
[9] V.G.Sprindz̆uk, Classical Diophantine Equations, Springer-Verlag, New York, 1993 | MR | Zbl
[10] C.Runge, “Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen”, J. reine und angew. Math., 100 (1887), 425–435 | MR | Zbl
[11] P.G.Walsh, “A quantitative version of Runge's theorem on diophantine equations”, Acta Arithmetica, LXII (1992), 157–172 | DOI | MR | Zbl