Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_2_a0, author = {Sreelatha Chandragiri and Olga A. Shishkina}, title = {Generalized {Bernoulli} numbers and polynomials in the context of the {Clifford} analysis}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {127--136}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a0/} }
TY - JOUR AU - Sreelatha Chandragiri AU - Olga A. Shishkina TI - Generalized Bernoulli numbers and polynomials in the context of the Clifford analysis JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 127 EP - 136 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a0/ LA - en ID - JSFU_2018_11_2_a0 ER -
%0 Journal Article %A Sreelatha Chandragiri %A Olga A. Shishkina %T Generalized Bernoulli numbers and polynomials in the context of the Clifford analysis %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 127-136 %V 11 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a0/ %G en %F JSFU_2018_11_2_a0
Sreelatha Chandragiri; Olga A. Shishkina. Generalized Bernoulli numbers and polynomials in the context of the Clifford analysis. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/JSFU_2018_11_2_a0/
[1] R. Fueter, Functions of a Hyper Complex variable, Lecture Notes. Written and supplemented by E. Bareiss, Fall Semester 1948/49, Univ. Zurich, 1950
[2] R.Delanghe, “On regular-analytic functions with values in a Clifford algebra”, Math. Ann., 185 (1970), 91–111 | DOI | MR
[3] K.Gurlebeck, K.Habetha, W.Sprobig, Holomorphic functions in the plane and $n$-dimensional space, Birkhauser Verlag, Basel, 2008 | MR | Zbl
[4] H.R. Malonek, M.I. Falcao, “On paravector valued homogeneous monogenic polynomials with binomial expansion”, Advances in Applied Clifford Algebras, 22:3 (2012), 789–801 | DOI | MR | Zbl
[5] G. Bretti, P. Natalini, P.E. Ricci, “Generalizations of the Bernoulli and Appell Polynomials”, Abstr. Appl. Anal., 2004, 613–623 | DOI | MR | Zbl
[6] F.Costabile, F.Dell'Accio, M.I.Gualtieri, “A new approach to Bernoulli Polynomials”, Rendiconti di Mathematica, Series VII, 26, Roma, 2006, 1–12 | MR | Zbl
[7] V.Lakshmikantham, D.Trigiante, Theory of Difference equations: Numerical Methods and Applications, M. Dekker, New York, 2002 | MR | Zbl
[8] P.Natalini, A.Bernardini, “A generalization of the Bernoulli Polynomials”, J. Appl. Math., 2003, 155–163 | DOI | MR | Zbl
[9] Z.Zhang, J.Wang, “Bernoulli Matrix and its algebraic properties”, Discrete Appl. Math., 154:11 (2006), 1622–1632 | DOI | MR | Zbl
[10] Y.Simsek, “Twisted (h,q)-Bernoulli numbers and polynomials related to twisted $(h,\,q)$-zeta functions and L-function”, J. Math Anal. Appl., 324:2 (2006), 790–804 | DOI | MR | Zbl
[11] Y.Simsek, V.Kurt, D.Kim, “New approach to the complete sum of products of the twisted $(h,\,q)$-Bernoulli numbers and polynomials”, J. Nonlinear Math. phys., 14:1 (2007), 44–56 | DOI | MR | Zbl
[12] Olga A. Shishkina, “Multidimensional Analog of the Bernoulli Polynomials and its Properties”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016), 384–392 | DOI
[13] L. Aloui, M.A. Abul-Ez, G.F. Hassan, “Bernoulli special monogenic polynomials with the difference and sum polynomial bases”, Complex Variables and Elliptic Equations, 59:5 (2014), 636–637 | DOI | MR
[14] H.R. Malonek, G. Tomaz, “Bernoulli polynomials and Pascal matrices in the context of Clifford analysis”, Discrete Applied Mathematics, 157 (2009), 838–847 | DOI | MR | Zbl
[15] F.Bracks, R.Delanghe, F.Sommen, Clifford analysis, Pitman, Boston–London–Melbourne, 1982 | MR
[16] H. Malonek, “A new hyper complex structure of the Eucledean space $R^{m+1}$ and the concept of hypercomplex differentiability”, Complex variables, 1990, no. 14, 25–33 | MR | Zbl
[17] H.Malonek, “Power series representation for monogenic functions in $R^{m+1}$ based on a permutational product”, Complex Variables, 1990, no. 15, 181–191 | MR | Zbl
[18] H.R.Malonek, “Selected topics in hypercomplex function theory”, Clifford algebras and potential theory, 7, ed. Sirkka-Liisa Eriksson, University of Joensuu, 2004, 111–150 | MR | Zbl