On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 91-96
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains some results related to holomorphic
extension of integrable functions defined on the boundary of $D\subset\mathbb
C^n$, $n>1$ into this domain. We shall consider integrable functions with the property of holomorphic extension along complex lines. In the complex plane $\mathbb C$ the results about functions with such property are trivial. Therefore, our results are essentially multidimensional.
Keywords:
integrable functions, holomorphic extension, Szegö kernel, complex lines.
Mots-clés : Poisson kernel
Mots-clés : Poisson kernel
@article{JSFU_2018_11_1_a12,
author = {Bayram P. Otemuratov},
title = {On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {91--96},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/}
}
TY - JOUR AU - Bayram P. Otemuratov TI - On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 91 EP - 96 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/ LA - en ID - JSFU_2018_11_1_a12 ER -
%0 Journal Article %A Bayram P. Otemuratov %T On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 91-96 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/ %G en %F JSFU_2018_11_1_a12
Bayram P. Otemuratov. On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/