Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2018_11_1_a12, author = {Bayram P. Otemuratov}, title = {On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {91--96}, publisher = {mathdoc}, volume = {11}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/} }
TY - JOUR AU - Bayram P. Otemuratov TI - On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 91 EP - 96 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/ LA - en ID - JSFU_2018_11_1_a12 ER -
%0 Journal Article %A Bayram P. Otemuratov %T On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 91-96 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/ %G en %F JSFU_2018_11_1_a12
Bayram P. Otemuratov. On holomorphic continuation of integrable functions along finite families of complex lines in an $n$-circular domain. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a12/
[1] B.P. Otemuratov, “On functions of class $L^p$ with a property of one-dimensional holomorphic extension”, Vestnik KrasGU. Ser. fiz. mat. nauki, 2006, no. 9, 95–100 (in Russian)
[2] B.P. Otemuratov, “On multidimensional theorems of Morera for integrable functions”, Uzb. mat. zh., 2009, no. 2, 112–119 (in Russian) | MR
[3] B.P. Otemuratov, “Some sets of complex lines of minimal dimension sufficient for holomorphic continuation of integrable functions”, Journal SFU. Mathematics and physics, 5:1 (2012), 97–106 (in Russian)
[4] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Amer. J. of Math., 2012, no. 6, 1473–1490 | DOI | MR
[5] A.M. Kytmanov, S.G. Myslivets, “Holomorphic extension of functions along finite families of complex straight lines in an $n$-circular domain”, Sib. Math. J., 57:4 (2016), 618–631 | DOI | MR
[6] L.A. Aizenberg, A.P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Nauka, Novosibirsk, 1979 (in Russian) | MR
[7] G.M. Henkin, Method of integral representations in complex analysis, Results of science technology. Modern problems of mathematics, 7, M., 1985 (in Russian) | MR
[8] I. Stein, G. Weis, Introduction to Fourier analysis on Euclidean spaces, Mir, M., 1974 (in Russian) | MR
[9] A.M. Kytmanov, Bochner-Martinelli integral and its applications, Nauka, Novosibirsk, 1992 (in Russian) | MR
[10] A.M. Kytmanov, S.G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR