Multidimensional boundary analog of the Hartogs theorem in circular domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 79-90
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper presents some results related to the holomorphic extension of functions, defined on the boundary of a domain $ D\subset\mathbb C^n $, $n>1$, into this domain. We study a functions with the one-dimensional holomorphic extension property along the complex lines.
Keywords:
functions with the one-dimensional holomorphic extension property
Mots-clés : circular domain.
Mots-clés : circular domain.
@article{JSFU_2018_11_1_a11,
author = {Alexander M. Kytmanov and Simona G. Myslivets},
title = {Multidimensional boundary analog of the {Hartogs} theorem in circular domains},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {79--90},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/}
}
TY - JOUR AU - Alexander M. Kytmanov AU - Simona G. Myslivets TI - Multidimensional boundary analog of the Hartogs theorem in circular domains JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2018 SP - 79 EP - 90 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/ LA - en ID - JSFU_2018_11_1_a11 ER -
%0 Journal Article %A Alexander M. Kytmanov %A Simona G. Myslivets %T Multidimensional boundary analog of the Hartogs theorem in circular domains %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2018 %P 79-90 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/ %G en %F JSFU_2018_11_1_a11
Alexander M. Kytmanov; Simona G. Myslivets. Multidimensional boundary analog of the Hartogs theorem in circular domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/