Multidimensional boundary analog of the Hartogs theorem in circular domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 79-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents some results related to the holomorphic extension of functions, defined on the boundary of a domain $ D\subset\mathbb C^n $, $n>1$, into this domain. We study a functions with the one-dimensional holomorphic extension property along the complex lines.
Keywords: functions with the one-dimensional holomorphic extension property
Mots-clés : circular domain.
@article{JSFU_2018_11_1_a11,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {Multidimensional boundary analog of the {Hartogs} theorem in circular domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - Multidimensional boundary analog of the Hartogs theorem in circular domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 79
EP  - 90
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/
LA  - en
ID  - JSFU_2018_11_1_a11
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T Multidimensional boundary analog of the Hartogs theorem in circular domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 79-90
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/
%G en
%F JSFU_2018_11_1_a11
Alexander M. Kytmanov; Simona G. Myslivets. Multidimensional boundary analog of the Hartogs theorem in circular domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/

[1] M. L. Agranovsky, R. E. Valsky, “Maximality of invariant algebras of functions”, Sib. Mat. J., 12:1 (1971), 3–12 (in Russian) | MR

[2] E. L. Stout, “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR

[3] L. A. Aizenberg, A. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Tranclantions of Mathematical Monographs, 58, American Mathematical Society, Providence, RI, 1983 | MR

[4] A. M. Kytmanov, S. G. Myslivets, “Higher-dimensional boundary analogs of the Morera theorem in problems of analytic continuation of functions”, J. Math. Sci., 120:6 (2004), 1842–1867 | DOI | MR

[5] J. Globevnik, E. L. Stout, “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR

[6] A. M. Kytmanov, S. G. Myslivets, “On the families of complex lines, sufficient for holomorphic continuations”, Math. Notes, 83:4 (2008), 545–551 | MR

[7] A. M. Kytmanov, S. G. Myslivets, V. I. Kuzovatov, “Families of complex lines of the minimal dimension, sufficient for holomorphic continuation of functions”, Sib. Math. J., 52:2 (2011), 256–266 | DOI | MR

[8] M. Agranovsky, “Propagation of boundary $CR$-foliations and Morera type theorems for manifolds with attached analytic discs”, Advan. in Math., 211:1 (2007), 284–326 | DOI | MR

[9] M. Agranovsky, “Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of $\mathbb C^n$”, J. d'Anal. Math., 13:1 (2011), 293–304 | DOI | MR

[10] L. Baracco, “Holomorphic extension from the sphere to the ball”, J. Math. Anal. Appl., 388:2 (2012), 760–762 | DOI | MR

[11] J. Globevnik, “Small families of complex lines for testing holomorphic extendibility”, Am. J. Math., 134:6 (2012), 1473–1490 | DOI | MR

[12] L. Baracco, “Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball”, Am. J. Math., 135:2 (2013), 493–497 | DOI | MR

[13] J. Globevnik, “Meromorphic extensions from small families of circles and holomorphic extensions from spheres”, Trans. Am. Math. Soc., 364:11 (2012), 5857–5880 | DOI | MR

[14] A. M. Kytmanov, S. G. Myslivets, “Holomorphic extension of functions along finite families of complex linea in a ball”, J. Sib. Fed. Univ. Math. and Phys., 5:4 (2012), 547–557

[15] A. M. Kytmanov, S. G. Myslivets, “An analog of the Hartogs theorem in a ball of $\mathbb C^n$”, Math. Nahr., 288:2–3 (2015), 224–234 | MR

[16] A. M. Kytmanov, S. G. Myslivets, Multidimensional Integral Representations, Springer Inter. Publ., Switzerland, 2015 | MR

[17] L. Bungart, “Boundary kernel functions for domains on complex manifolds”, Pac. J. Math., 14:4 (1964), 1151–1164 | DOI | MR

[18] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam–New York, 1989 | MR

[19] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidian Spaces, Princeton Univ. Press, Princeton, 1975 | MR

[20] A. M. Kytmanov, The Bochner-Martinelli Integral and Its Applications, Birkhäuser, Basel–Boston–Berlin, 1995 | MR

[21] B. V. Shabat, Introduction to Complex Analysis, v. 1, Functions of One Complex Variable, Amer. Math. Soc., Providence, 1992 | MR

[22] A. M. Kytmanov, S. G. Myslivets, “Holomorphic extension of functions along finite families of complex linea in a $n$-circular domain”, Sib. Math. J., 57:4 (2016), 618–631 | DOI | MR