Multidimensional boundary analog of the Hartogs theorem in circular domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 79-90

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents some results related to the holomorphic extension of functions, defined on the boundary of a domain $ D\subset\mathbb C^n $, $n>1$, into this domain. We study a functions with the one-dimensional holomorphic extension property along the complex lines.
Keywords: functions with the one-dimensional holomorphic extension property
Mots-clés : circular domain.
@article{JSFU_2018_11_1_a11,
     author = {Alexander M. Kytmanov and Simona G. Myslivets},
     title = {Multidimensional boundary analog of the {Hartogs} theorem in circular domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/}
}
TY  - JOUR
AU  - Alexander M. Kytmanov
AU  - Simona G. Myslivets
TI  - Multidimensional boundary analog of the Hartogs theorem in circular domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2018
SP  - 79
EP  - 90
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/
LA  - en
ID  - JSFU_2018_11_1_a11
ER  - 
%0 Journal Article
%A Alexander M. Kytmanov
%A Simona G. Myslivets
%T Multidimensional boundary analog of the Hartogs theorem in circular domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2018
%P 79-90
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/
%G en
%F JSFU_2018_11_1_a11
Alexander M. Kytmanov; Simona G. Myslivets. Multidimensional boundary analog of the Hartogs theorem in circular domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 11 (2018) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/JSFU_2018_11_1_a11/