Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_4_a9, author = {Pamela E. Harris and Edward L. Lauber}, title = {Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {494--502}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/} }
TY - JOUR AU - Pamela E. Harris AU - Edward L. Lauber TI - Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$ JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 494 EP - 502 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/ LA - en ID - JSFU_2017_10_4_a9 ER -
%0 Journal Article %A Pamela E. Harris %A Edward L. Lauber %T Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$ %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 494-502 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/ %G en %F JSFU_2017_10_4_a9
Pamela E. Harris; Edward L. Lauber. Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 494-502. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/
[1] J. Fernández-Nú{ñ}ez, W. García-Fuertes, A. M. Perelomov, “On the generating function of weight multiplicities for the representations of the Lie algebra $C_2$”, Journal of Mathematical Physics, 56:4 (2015), 041702 | DOI | MR | Zbl
[2] R. Goodman, N. R. Wallach, Symmetry, Representations and Invariants, Springer, New York, 2009 | MR | Zbl
[3] P. E. Harris, Computing weight multiplicities, Foundations for Undergraduate Research in Mathematics, Springer (to appear)
[4] P. E. Harris, “On the adjoint representation of $\mathfrak{sl}_n$ and the Fibonacci numbers”, Comptes Rendus de l Académie des Sciences, Series I, Paris, 349 (2011), 935–937 | MR | Zbl
[5] P. E. Harris, Kostant's weight multiplicity formula and the Fibonacci numbers, arXiv: 1111.6648 [math.RT]
[6] P. E. Harris, Combinatorial Problems Related to Kostant's Weight Multiplicity Formula, Doctoral dissertation, University of Wisconsin-Milwaukee, Milwaukee, WI, 2012 | MR | Zbl
[7] P. E. Harris, E. Insko, M. Omar, The $q$-analog of Kostant's partition function and the highest root of the classical Lie algebras, arXiv: 1508.07934 [math.CO]
[8] P. E. Harris, E. Insko, L. K. Williams, “The adjoint representation of a classical Lie algebra and the support of Kostant's weight multiplicity formula”, Journal of Combinatorics, 7:1 (2016), 75–116 | DOI | MR | Zbl
[9] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Universty Press, Cambridge, United Kingdom, 1997 | MR
[10] B. Kostant, “A formula for the multiplicity of a weight”, Proc. Natl. Acad. Sci, USA, 44 (1958), 588–589 | DOI | MR | Zbl
[11] G. Lusztig, “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Astérisque, 101–102, 1983, 208–229 | MR | Zbl
[12] H. Refaghat, M. Shahryari, “Kostant Partition Function for $\frak{sp}_4(\mathbb{C})$”, Journal of Siberian Federal University. Mathematics Physics, 5:1 (2012), 18–24