Mots-clés : Kostant partition functions
@article{JSFU_2017_10_4_a9,
author = {Pamela E. Harris and Edward L. Lauber},
title = {Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {494--502},
year = {2017},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/}
}
TY - JOUR
AU - Pamela E. Harris
AU - Edward L. Lauber
TI - Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$
JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY - 2017
SP - 494
EP - 502
VL - 10
IS - 4
UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/
LA - en
ID - JSFU_2017_10_4_a9
ER -
%0 Journal Article
%A Pamela E. Harris
%A Edward L. Lauber
%T Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 494-502
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/
%G en
%F JSFU_2017_10_4_a9
Pamela E. Harris; Edward L. Lauber. Weight $q$-multiplicities for representations of $\mathfrak{sp}_4(\mathbb{C})$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 494-502. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a9/
[1] J. Fernández-Nú{ñ}ez, W. García-Fuertes, A. M. Perelomov, “On the generating function of weight multiplicities for the representations of the Lie algebra $C_2$”, Journal of Mathematical Physics, 56:4 (2015), 041702 | DOI | MR | Zbl
[2] R. Goodman, N. R. Wallach, Symmetry, Representations and Invariants, Springer, New York, 2009 | MR | Zbl
[3] P. E. Harris, Computing weight multiplicities, Foundations for Undergraduate Research in Mathematics, Springer (to appear)
[4] P. E. Harris, “On the adjoint representation of $\mathfrak{sl}_n$ and the Fibonacci numbers”, Comptes Rendus de l Académie des Sciences, Series I, Paris, 349 (2011), 935–937 | MR | Zbl
[5] P. E. Harris, Kostant's weight multiplicity formula and the Fibonacci numbers, arXiv: 1111.6648 [math.RT]
[6] P. E. Harris, Combinatorial Problems Related to Kostant's Weight Multiplicity Formula, Doctoral dissertation, University of Wisconsin-Milwaukee, Milwaukee, WI, 2012 | MR | Zbl
[7] P. E. Harris, E. Insko, M. Omar, The $q$-analog of Kostant's partition function and the highest root of the classical Lie algebras, arXiv: 1508.07934 [math.CO]
[8] P. E. Harris, E. Insko, L. K. Williams, “The adjoint representation of a classical Lie algebra and the support of Kostant's weight multiplicity formula”, Journal of Combinatorics, 7:1 (2016), 75–116 | DOI | MR | Zbl
[9] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Universty Press, Cambridge, United Kingdom, 1997 | MR
[10] B. Kostant, “A formula for the multiplicity of a weight”, Proc. Natl. Acad. Sci, USA, 44 (1958), 588–589 | DOI | MR | Zbl
[11] G. Lusztig, “Singularities, character formulas, and a $q$-analog of weight multiplicities”, Astérisque, 101–102, 1983, 208–229 | MR | Zbl
[12] H. Refaghat, M. Shahryari, “Kostant Partition Function for $\frak{sp}_4(\mathbb{C})$”, Journal of Siberian Federal University. Mathematics Physics, 5:1 (2012), 18–24