The Neumann problem after Spencer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493

Voir la notice de l'article provenant de la source Math-Net.Ru

When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of compact manifolds with boundary one is led to a boundary value problem for the Laplacian of the complex which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of sequences of differential operators on a compact manifold with boundary. These are sequences of small curvature, i.e., bearing the property that the composition of any two neighbouring operators has order less than two.
Keywords: manifolds with boundary, Hodge theory, Neumann problem.
Mots-clés : elliptic complexes
@article{JSFU_2017_10_4_a8,
     author = {Azal Mera and Nikolai Tarkhanov},
     title = {The {Neumann} problem after {Spencer}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {474--493},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/}
}
TY  - JOUR
AU  - Azal Mera
AU  - Nikolai Tarkhanov
TI  - The Neumann problem after Spencer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 474
EP  - 493
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
LA  - en
ID  - JSFU_2017_10_4_a8
ER  - 
%0 Journal Article
%A Azal Mera
%A Nikolai Tarkhanov
%T The Neumann problem after Spencer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 474-493
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
%G en
%F JSFU_2017_10_4_a8
Azal Mera; Nikolai Tarkhanov. The Neumann problem after Spencer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/