Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_4_a8, author = {Azal Mera and Nikolai Tarkhanov}, title = {The {Neumann} problem after {Spencer}}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {474--493}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/} }
TY - JOUR AU - Azal Mera AU - Nikolai Tarkhanov TI - The Neumann problem after Spencer JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 474 EP - 493 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/ LA - en ID - JSFU_2017_10_4_a8 ER -
Azal Mera; Nikolai Tarkhanov. The Neumann problem after Spencer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, N.J., 1965 | MR | Zbl
[2] A. Alfonso, B. Simon, “The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators”, J. Operator Theory, 4 (1980), 251–270 | MR
[3] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin et al., 1963 | MR | Zbl
[4] L. Hörmander, “Pseudodifferential operators”, Comm. Pure Appl. Math., 18 (1965), 501–517 | DOI | MR | Zbl
[5] L. Hörmander, “Pseudo-differential operators and nonelliptic boundary problems”, Ann. of Math., 83 (1966), 129–209 | DOI | MR | Zbl
[6] J. J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. I; II”, Ann. of Math., 78 (1963), 112–148 ; 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl
[7] J. J. Kohn, L. Nirenberg, “Estimates for elliptic complexes of higher order”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl
[8] C. B. Morrey, Jr., “The $\bar{\partial}\,$-Neumann problem on strongly pseudo-convex manifolds”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 171–178 | MR
[9] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 648–674 | DOI | MR
[10] W. J. Sweeney, “A non-compact Dirichlet norm”, Proc. Nat. Acad. Sci. USA, 58 (1967), 2193–2195 | DOI | MR | Zbl
[11] W. J. Sweeney, “A uniqueness theorem for the Neumann problem”, Ann. of Math., 90:2 (1969), 353–360 | DOI | MR | Zbl
[12] W. J. Sweeney, “Estimates for elliptic complexes of higher order”, J. Diff. Eq., 10 (1971), 112–140 | DOI | MR | Zbl
[13] W. J. Sweeney, “Coerciveness in the Neumann problem”, J. Diff. Geom., 6 (1971/72), 375–393 | DOI | MR
[14] W. J. Sweeney, “A condition for subellipticity in Spencer's Neumann problem”, J. Diff. Eq., 21:2 (1976), 316–362 | DOI | MR | Zbl
[15] W. J. Sweeney, “Subelliptic estimates for certain complexes of pseudodifferential operators”, J. Diff. Eq., 61:2 (1986), 250–267 | DOI | MR | Zbl
[16] D. C. Spencer, “Harmonic integrals and Neumann problems associated with linear partial differential equations”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 253–260 | MR
[17] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl
[18] N. Tarkhanov, “Euler characteristic of Fredholm quasicomplexes”, Funct. Anal. and its Appl., 41:4 (2007), 87–93 | DOI | MR | Zbl
[19] R. O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 | MR | Zbl