The Neumann problem after Spencer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of compact manifolds with boundary one is led to a boundary value problem for the Laplacian of the complex which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of sequences of differential operators on a compact manifold with boundary. These are sequences of small curvature, i.e., bearing the property that the composition of any two neighbouring operators has order less than two.
Keywords: manifolds with boundary, Hodge theory, Neumann problem.
Mots-clés : elliptic complexes
@article{JSFU_2017_10_4_a8,
     author = {Azal Mera and Nikolai Tarkhanov},
     title = {The {Neumann} problem after {Spencer}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {474--493},
     year = {2017},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/}
}
TY  - JOUR
AU  - Azal Mera
AU  - Nikolai Tarkhanov
TI  - The Neumann problem after Spencer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 474
EP  - 493
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
LA  - en
ID  - JSFU_2017_10_4_a8
ER  - 
%0 Journal Article
%A Azal Mera
%A Nikolai Tarkhanov
%T The Neumann problem after Spencer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 474-493
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
%G en
%F JSFU_2017_10_4_a8
Azal Mera; Nikolai Tarkhanov. The Neumann problem after Spencer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, N.J., 1965 | MR | Zbl

[2] A. Alfonso, B. Simon, “The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators”, J. Operator Theory, 4 (1980), 251–270 | MR

[3] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin et al., 1963 | MR | Zbl

[4] L. Hörmander, “Pseudodifferential operators”, Comm. Pure Appl. Math., 18 (1965), 501–517 | DOI | MR | Zbl

[5] L. Hörmander, “Pseudo-differential operators and nonelliptic boundary problems”, Ann. of Math., 83 (1966), 129–209 | DOI | MR | Zbl

[6] J. J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. I; II”, Ann. of Math., 78 (1963), 112–148 ; 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl

[7] J. J. Kohn, L. Nirenberg, “Estimates for elliptic complexes of higher order”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl

[8] C. B. Morrey, Jr., “The $\bar{\partial}\,$-Neumann problem on strongly pseudo-convex manifolds”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 171–178 | MR

[9] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 648–674 | DOI | MR

[10] W. J. Sweeney, “A non-compact Dirichlet norm”, Proc. Nat. Acad. Sci. USA, 58 (1967), 2193–2195 | DOI | MR | Zbl

[11] W. J. Sweeney, “A uniqueness theorem for the Neumann problem”, Ann. of Math., 90:2 (1969), 353–360 | DOI | MR | Zbl

[12] W. J. Sweeney, “Estimates for elliptic complexes of higher order”, J. Diff. Eq., 10 (1971), 112–140 | DOI | MR | Zbl

[13] W. J. Sweeney, “Coerciveness in the Neumann problem”, J. Diff. Geom., 6 (1971/72), 375–393 | DOI | MR

[14] W. J. Sweeney, “A condition for subellipticity in Spencer's Neumann problem”, J. Diff. Eq., 21:2 (1976), 316–362 | DOI | MR | Zbl

[15] W. J. Sweeney, “Subelliptic estimates for certain complexes of pseudodifferential operators”, J. Diff. Eq., 61:2 (1986), 250–267 | DOI | MR | Zbl

[16] D. C. Spencer, “Harmonic integrals and Neumann problems associated with linear partial differential equations”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 253–260 | MR

[17] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl

[18] N. Tarkhanov, “Euler characteristic of Fredholm quasicomplexes”, Funct. Anal. and its Appl., 41:4 (2007), 87–93 | DOI | MR | Zbl

[19] R. O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 | MR | Zbl