The Neumann problem after Spencer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493
Voir la notice de l'article provenant de la source Math-Net.Ru
When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds
to the case of compact manifolds with boundary one is led to a boundary value problem for
the Laplacian of the complex which is usually referred to as Neumann problem.
We study the Neumann problem for a larger class of sequences of differential operators on
a compact manifold with boundary.
These are sequences of small curvature, i.e., bearing the property that the composition of
any two neighbouring operators has order less than two.
Keywords:
manifolds with boundary, Hodge theory, Neumann problem.
Mots-clés : elliptic complexes
Mots-clés : elliptic complexes
@article{JSFU_2017_10_4_a8,
author = {Azal Mera and Nikolai Tarkhanov},
title = {The {Neumann} problem after {Spencer}},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {474--493},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/}
}
TY - JOUR AU - Azal Mera AU - Nikolai Tarkhanov TI - The Neumann problem after Spencer JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 474 EP - 493 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/ LA - en ID - JSFU_2017_10_4_a8 ER -
Azal Mera; Nikolai Tarkhanov. The Neumann problem after Spencer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/