The Neumann problem after Spencer
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of compact manifolds with boundary one is led to a boundary value problem for the Laplacian of the complex which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of sequences of differential operators on a compact manifold with boundary. These are sequences of small curvature, i.e., bearing the property that the composition of any two neighbouring operators has order less than two.
Keywords: manifolds with boundary, Hodge theory, Neumann problem.
Mots-clés : elliptic complexes
@article{JSFU_2017_10_4_a8,
     author = {Azal Mera and Nikolai Tarkhanov},
     title = {The {Neumann} problem after {Spencer}},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {474--493},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/}
}
TY  - JOUR
AU  - Azal Mera
AU  - Nikolai Tarkhanov
TI  - The Neumann problem after Spencer
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 474
EP  - 493
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
LA  - en
ID  - JSFU_2017_10_4_a8
ER  - 
%0 Journal Article
%A Azal Mera
%A Nikolai Tarkhanov
%T The Neumann problem after Spencer
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 474-493
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/
%G en
%F JSFU_2017_10_4_a8
Azal Mera; Nikolai Tarkhanov. The Neumann problem after Spencer. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 474-493. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a8/

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, N.J., 1965 | MR | Zbl

[2] A. Alfonso, B. Simon, “The Birman-Krein-Vishik theory of self-adjoint extensions of semibounded operators”, J. Operator Theory, 4 (1980), 251–270 | MR

[3] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin et al., 1963 | MR | Zbl

[4] L. Hörmander, “Pseudodifferential operators”, Comm. Pure Appl. Math., 18 (1965), 501–517 | DOI | MR | Zbl

[5] L. Hörmander, “Pseudo-differential operators and nonelliptic boundary problems”, Ann. of Math., 83 (1966), 129–209 | DOI | MR | Zbl

[6] J. J. Kohn, “Harmonic integrals on strongly pseudo-convex manifolds. I; II”, Ann. of Math., 78 (1963), 112–148 ; 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl

[7] J. J. Kohn, L. Nirenberg, “Estimates for elliptic complexes of higher order”, Comm. Pure Appl. Math., 18 (1965), 443–492 | DOI | MR | Zbl

[8] C. B. Morrey, Jr., “The $\bar{\partial}\,$-Neumann problem on strongly pseudo-convex manifolds”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 171–178 | MR

[9] L. Nirenberg, “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 648–674 | DOI | MR

[10] W. J. Sweeney, “A non-compact Dirichlet norm”, Proc. Nat. Acad. Sci. USA, 58 (1967), 2193–2195 | DOI | MR | Zbl

[11] W. J. Sweeney, “A uniqueness theorem for the Neumann problem”, Ann. of Math., 90:2 (1969), 353–360 | DOI | MR | Zbl

[12] W. J. Sweeney, “Estimates for elliptic complexes of higher order”, J. Diff. Eq., 10 (1971), 112–140 | DOI | MR | Zbl

[13] W. J. Sweeney, “Coerciveness in the Neumann problem”, J. Diff. Geom., 6 (1971/72), 375–393 | DOI | MR

[14] W. J. Sweeney, “A condition for subellipticity in Spencer's Neumann problem”, J. Diff. Eq., 21:2 (1976), 316–362 | DOI | MR | Zbl

[15] W. J. Sweeney, “Subelliptic estimates for certain complexes of pseudodifferential operators”, J. Diff. Eq., 61:2 (1986), 250–267 | DOI | MR | Zbl

[16] D. C. Spencer, “Harmonic integrals and Neumann problems associated with linear partial differential equations”, Outlines of Joint Soviet-American Symposium on Partial Differential Equations (Novosibirsk, 1963), 253–260 | MR

[17] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl

[18] N. Tarkhanov, “Euler characteristic of Fredholm quasicomplexes”, Funct. Anal. and its Appl., 41:4 (2007), 87–93 | DOI | MR | Zbl

[19] R. O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980 | MR | Zbl