On non-parametric models of multidimensional non-inertial processes with dependent input variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 514-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of identification of multidimensional non-inertial systems with delay is considered. Components of the input vector are stochastically related, and this relationship is unknown a priori. Such processes have "tubular" structure in the space of the input and output variables. In this situation methods of identification theory of non-inertial systems are not applicable. In general, it is not known a priori whether the process has "tubular" structure or not. To clear up this question the problem of estimation of the volume of a subdomain where "tubular" process takes place is considered. The initial data for this problem follows from the measurement of input-output variables. An algorithm for estimating the volume of the "tubular" subdomain in relation to the volume of the investigated process is suggested. The volume of the investigated process is always known from a priori information or production schedules. Numerical experiments are carried out with the use of the method of statistical modeling. They show high effectiveness of the proposed algorithm.
Keywords: non-parametric modeling, non-inertial processes with delay, indicator function, H-process.
@article{JSFU_2017_10_4_a12,
     author = {Alexander V. Medvedev and Ekaterina A. Chzhan},
     title = {On non-parametric models of multidimensional non-inertial processes with dependent input variables},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {514--521},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a12/}
}
TY  - JOUR
AU  - Alexander V. Medvedev
AU  - Ekaterina A. Chzhan
TI  - On non-parametric models of multidimensional non-inertial processes with dependent input variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 514
EP  - 521
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a12/
LA  - en
ID  - JSFU_2017_10_4_a12
ER  - 
%0 Journal Article
%A Alexander V. Medvedev
%A Ekaterina A. Chzhan
%T On non-parametric models of multidimensional non-inertial processes with dependent input variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 514-521
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a12/
%G en
%F JSFU_2017_10_4_a12
Alexander V. Medvedev; Ekaterina A. Chzhan. On non-parametric models of multidimensional non-inertial processes with dependent input variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 514-521. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a12/

[1] K. J. Arrow, “The work of Ragnar Frisch, econometrician”, Econometrica: Journal of the Econometric Society, 8:2 (1960), 175–192 | DOI | MR

[2] S. A. Ayvazyan, I. S. Enukov, L. D. Meshalkin, Applied Statistics: Basics of modeling and primary data processing, Finansy i Statistika, M., 1983 (in Russian) | MR

[3] A. V. Koltyshev, “The methods of forecasting the financial condition of the oil and gas company”, Problems of Geology and Mineral Resources Development, Proceedings of the XIX International Symposium of Academician M. A. Usov, v. 2, Tomsk, 2015, 664–670 (in Russian)

[4] I. V. Orlova, E. S. Filonova, “Selection of exogenous factors in the regression model with data multicollinearity”, The International Journal of Applied and Basic Research, 5 (2015), 108–116 (in Russian)

[5] J. G. Prunier et al., “Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses”, Molecular ecology, 24 (2015), 263–283 | DOI

[6] S. F. Spear, N. Balkenhol, M. J. Fortin, B. H. McRae, K. Scribner, “Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis”, Molecular Ecology, 19 (2010), 3576–3591 | DOI

[7] A. V. Medvedev, E. D. Mihov, O. V. Nepomnyashchiy, “Mathematical Modeling of H-processes”, Journal of Siberian Federal University. Mathematics Physics, 9:3 (2016), 338–346 | DOI

[8] Ya. Z. Tcypkin, Foundation of theory identification, Nauka, M., 1984 (in Russian) | MR

[9] A. Fournier, D. Fussell, L. Carpenter, “Computer rendering of stochastic models”, Communications of the ACM, 25:6 (1982), 371–384 | DOI

[10] B. Peeters, G. De Roeck, “Stochastic system identification for operational modal analysis: a review”, Journal of Dynamic Systems, Measurement and Control, 123 (2001), 659–667 | DOI

[11] E. A. Nadaraya, “On estimating regression”, Theory of Probability and its Applications, 9 (1964), 141–142 | DOI