Temperature-dependent photoconductance and optical properties of In$_2$O$_3$ thin films prepared by autowave oxidation
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 399-409.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In$_2$O$_3$ films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was further decreased, measured in the dark. Under UV irradiation, the resistivity of the films at room temperature decreased sharply by $\sim$25 % and from 300 to 95 K, and continued to decrease by $\sim$38 % with a further decreasing temperature. When the UV source was turned off, the resistivity relaxed at a rate of 15 $\Omega$/s for the first 30 seconds and 7 $\Omega$/s for the remaining time. The transmittance decreased by 3.1 % at a wavelength of 6.3 $\mu$m after the irradiation ceased. The velocity of the relaxation transmittance was 0.006 %/s. The relaxation of the electrical resistance and transmittance after UV irradiation termination were similar. It was assumed that the dominant mechanism responsible for the change in the conductivity in the indium oxide films during UV irradiation was photoreduction.
Keywords: In$_2$O$_3$ thin films, photoconductance, autowave oxidation.
@article{JSFU_2017_10_4_a0,
     author = {Igor A. Tambasov and Viktor G. Myagkov and Alexander A. Ivanenko and Mikhail N. Volochaev and Anton S. Voronin and Fedor S. Ivanchenko and Ekaterina V. Tambasova},
     title = {Temperature-dependent photoconductance and optical properties of {In}$_2${O}$_3$ thin films prepared by autowave oxidation},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {399--409},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a0/}
}
TY  - JOUR
AU  - Igor A. Tambasov
AU  - Viktor G. Myagkov
AU  - Alexander A. Ivanenko
AU  - Mikhail N. Volochaev
AU  - Anton S. Voronin
AU  - Fedor S. Ivanchenko
AU  - Ekaterina V. Tambasova
TI  - Temperature-dependent photoconductance and optical properties of In$_2$O$_3$ thin films prepared by autowave oxidation
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 399
EP  - 409
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a0/
LA  - en
ID  - JSFU_2017_10_4_a0
ER  - 
%0 Journal Article
%A Igor A. Tambasov
%A Viktor G. Myagkov
%A Alexander A. Ivanenko
%A Mikhail N. Volochaev
%A Anton S. Voronin
%A Fedor S. Ivanchenko
%A Ekaterina V. Tambasova
%T Temperature-dependent photoconductance and optical properties of In$_2$O$_3$ thin films prepared by autowave oxidation
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 399-409
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a0/
%G en
%F JSFU_2017_10_4_a0
Igor A. Tambasov; Viktor G. Myagkov; Alexander A. Ivanenko; Mikhail N. Volochaev; Anton S. Voronin; Fedor S. Ivanchenko; Ekaterina V. Tambasova. Temperature-dependent photoconductance and optical properties of In$_2$O$_3$ thin films prepared by autowave oxidation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 4, pp. 399-409. http://geodesic.mathdoc.fr/item/JSFU_2017_10_4_a0/

[1] S. Calnan, A.N. Tiwari, “High mobility transparent conducting oxes for thin film solar cells”, Thin Solid Films, 518 (2010), 1839–1849 | DOI

[2] S. Z. Karazhanov, P. Ravindran, P. Vajeeston, A. Ulyashin, T.G. Finstad, H. Fjellvag, “Phase stability, electronic structure, and optical properties of indium oxide polytypes”, Physical Review B, 76 (2007), 075129 | DOI

[3] C.G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review”, Solar Energy Materials and Solar Cells, 91 (2007), 1529–1598 | DOI

[4] P.D.C. King, T.D. Veal, “Conductivity in transp,arent oxide semiconductors”, Journal of Physics-Condensed Matter, 23 (2011), 334214 | DOI

[5] S.Y. Han, G.S. Herman, C.H. Chang, “Low-Temperature, High-Performance, Solution-Processed Indium Oxide Thin-Film Transistors”, Journal of the American Chemical Society, 133 (2011), 5166–5169 | DOI | MR

[6] N. Katsarakis, “Photon sensitive high index metal oxide films”, Journal of Physics-Condensed Matter, 16 (2004), 3757–3768

[7] S. Jeong, J. Moon, “Low-temperature, solution-processed metal oxide thin film transistors”, Journal of Materials Chemistry, 22 (2012), 1243–1250 | DOI

[8] L. Wang, M.H. Yoon, G. Lu, Y. Yang, A. Facchetti, T.J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors”, Nature Materials, 5 (2006), 893–900 | DOI

[9] E. Fortunato, P. Barquinha, R. Martins, “Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances”, Advanced Materials, 24 (2012), 2945–2986 | DOI

[10] T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, “Mesoporous materials as gas sensors”, Chemical Society Reviews, 42 (2013), 4036–4053 | DOI

[11] M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, “Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing”, Nature Materials, 10 (2011), 382–388 | DOI

[12] R.M. Pasquarelli, D.S. Ginley, R. O'Hayre, “Solution processing of transparent conductors: from flask to film”, Chemical Society Reviews, 40 (2011), 5406–5441 | DOI

[13] M.G. Kim, J.W. Hennek, H.S. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, “Delayed Ignition of Autocatalytic Combustion Precursors: Low-Temperature Nanomaterial Binder Approach to Electronically Functional Oxide Films”, Journal of the American Chemical Society, 134 (2012), 11583–11593 | DOI

[14] F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, H. Matsui, M. Motoyama, “High-quality indium oxide films at low substrate temperature”, Applied Physics Letters, 74 (1999), 3059 | DOI

[15] L.G. Bloor, C.J. Carmalt, D. Pugh, “Single-source precursors to gallium and indium oxide thin films”, Coordination Chemistry Reviews, 255 (2011), 1293–1318 | DOI

[16] A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, R. Schafranek, S.P. Harvey, T.O. Mason, “Surface potentials of magnetron sputtered transparent conducting oxides”, Thin Solid Films, 518 (2009), 1197–1203 | DOI

[17] M. Himmerlich, C.Y. Wang, V. Cimalla, O. Ambacher, S. Krischok, “Surface properties of stoichiometric and defect-rich indium oxide films grown by MOCVD”, Journal of Applied Physics, 111 (2012), 1197–1203 | DOI

[18] Y.H. Kim, J.S. Heo, T.H. Kim, S. Park, M.H. Yoon, J. Kim, M.S. Oh, G.R. Yi, Y.Y. Noh, S.K. Park, “Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films”, Nature, 489 (2012), 128–191 | DOI

[19] K.A. Sierros, D.R. Cairns, J.S. Abell, S.N. Kukureka, “Pulsed laser deposition of indium tin oxide films on flexible polyethylene naphthalate display substrates at room temperature”, Thin Solid Films, 518 (2010), 2623–2627 | DOI

[20] I.A. Tambasov, V.G. Myagkov, A.A. Ivanenko, I.V. Nemtsev, L.E. Bykova, G.N. Bondarenko, J.L. Mihlin, I.A. Maksimov, V.V. Ivanov, S.V Balashov, D.S. Karpenko, “Structural and optical properties of thin In2O3 films produced by autowave oxidation”, Semiconductors, 47 (2013), 569–573 | DOI

[21] A.G. Merzhanov, “Combustion and explosion processes in physical chemistry and technology of inorganic materials”, Uspekhi Khimii, 72 (2003), 323–345 (in Russian)

[22] K. Rajeshwar, N.R. de Tacconi, “Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation”, Chemical Society Reviews, 38 (2009), 1984–1998 | DOI

[23] Y.S. Rim, H.S. Lim, H.J. Kim, “Low-Temperature Metal-Oxide Thin-Film Transistors Formed by Directly Photopatternable and Combustible Solution Synthesis”, Acts Applied Materials and Interfaces, 5 (2013), 3565–3571 | DOI

[24] L. Qin, P.S. Dutta, S. Sawyer, “Photoresponse of indium oxide particulate-based thin films fabricated using milled nanorods grown by the self-catalytic vapor-liquid-solid process”, Semiconductor Science and Technology, 27 (2012), 045005 | DOI

[25] C.Y. Wang, V. Cimalla, T. Kups, C.-C. Rohlig, H. Romanus, V. Lebedev, J. Pezoldt, T. Stauden, O. Ambacher, “Photoreduction and oxidation behavior of In2O3 nanoparticles by metal organic chemical vapor deposition”, Journal of Applied Physics, 102 (2007), 044310 | DOI

[26] J. Olivier, B. Servet, M. Vergnolle, M. Mosca, G. Garry, “Stability/instability of conductivity and work function changes of ITO thin films, UV-irradiated in air or vacuum – Measurements by the four-probe method and by Kelvin force microscopy”, Synthetic Metalss, 122 (2001), 87–89 | DOI

[27] M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V. Cimalla, G. Kiriakidis, “Dependence of the photoreduction and oxidation behavior of indium oxide films on substrate temperature and film thickness”, Journal of Applied Physics, 90 (2001), 5382–5387 | DOI

[28] G. Kiriakidis, K. Moschovis, I. Kortidis, V. Binas, “Ultra-low gas sensing utilizing metal oxide thin films”, Vacuum, 86 (2012), 495–506 | DOI

[29] T. Wagner, C.D. Kohl, S. Morandi, C. Malagu, N. Donato, M. Latino, G. Neri, M. Tiemann, “Photoreduction of Mesoporous In2O3: Mechanistic Model and Utility in Gas Sensing”, Chemistry-a European Journal, 18 (2012), 8216–8223 | DOI

[30] T. Wagner, J. Hennemann, C.D. Kohl, M. Tiemann, “Photocatalytic ozone sensor based on mesoporous indium oxide: Influence of the relative humidity on the sensing performance”, Thin Solid Films, 520 (2011), 918–921 | DOI

[31] C.-C. Chang, A.A. Banishev, G.L. Klimchitskaya, V.M. Mostepanenko, U. Mohideen, “Reduction of the Casimir Force from Indium Tin Oxide Film by UV Treatment”, Physical Review Letters, 107 (2011), 090403 | DOI

[32] V. Brinzari, M. Ivanov, B.K. Cho, M. Kamei, G. Korotcenkov, “Photoconductivity in In2O3 nanoscale thin films: Interrelation with chemisorbed-type conductometric response towards oxygen”, Sensors and Actuators B: Chemical, 148 (2010), 427–438 | DOI

[33] M.D.H. Chowdhury, P. Migliorato, J. Jang, “Temperature dependence of negative bias under illumination stress and recovery in amorphous indium gallium zinc oxide thin film transistors”, Applied Physics Letters, 102 (2013) | Zbl

[34] A. Dixit, R.P. Panguluri, C. Sudakar, P. Kharel, P. Thapa, I. Avrutsky, R. Naik, G. Lawes, B. Nadgorny, “Robust room temperature persistent photoconductivity in polycrystalline indium oxide films”, Applied Physics Letters, 94 (2009) | DOI

[35] O. Bierwagen, J.S. Speck, “High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration”, Applied Physics Letters, 97:7 (2010), 072103 | DOI

[36] C.A. Amorim, O.M. Berengue, H. Kamimura, E.R. Leite, A.J. Chiquito, “Measuring the mobility of single crystalline wires and its dependence on temperature and carrier density”, Journal of Physics-Condensed Matter, 23 (2011), 205803 | DOI

[37] V. Scherer, C. Janowitz, A. Krapf, H. Dwelk, D. Braun, R. Manzke, “Transport and angular resolved photoemission measurements of the electronic properties of In2O3 bulk single crystals”, Applied Physics Letters, 100:21 (2012), 212108 | DOI

[38] N. Preissler, O. Bierwagen, A.T. Ramu, J.S. Speck, “Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In2O3 films”, Physical Review B, 88:7 (2013), 085305 | DOI

[39] I.A. Zhurbina, V.Y. Timoshenko, “Optical generation of free charge carriers in nanocrystalline tin oxide for gas sensor application”, Microelectronic Engineering, 90 (2012), 44–46 | DOI

[40] M.D. Losego, A.Y. Efremenko, C.L. Rhodes, M.G. Cerruti, S. Franzen, J.P. Maria, “Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance”, Journal of Applied Physics, 106:2 (2009), 024903 | DOI

[41] R.J. Mendelsberg, G. Garcia, D.J. Milliron, “Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory”, Journal of Applied Physics, 111 (2012), 063515 | DOI

[42] K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes”, Nature Photonics, 6 (2012), 808–816 | DOI

[43] S.H. Brewer, S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory”, Chemical Physics, 300 (2004), 285–293 | DOI

[44] J.R. Bellingham, W.A. Phillips, C.J. Adkins, “Electrical and optical-properties of amorphous indium oxide”, Journal of Physics-Condensed Matter, 2 (1990), 6207–6221 | DOI

[45] I.A. Tambasov, V.G. Maygkov, A.S. Tarasov, A.A. Ivanenko, L.E. Bykova, I.V. Nemtsev, E.V. Eremin, E.V. Yozhikova, “Reversible UV induced metal-semiconductor transition in In2O3 thin films prepared by autowave oxidation”, Semiconductor Science and Technology, 29 (2014), 082001 | DOI

[46] Y. Muraoka, N. Takubo, Z. Hiroi, “Photoinduced conductivity in tin dioxide thin films”, Journal of Applied Physics, 105 (2009), 103702 | DOI

[47] S. Lany, A. Zakutayev, T.O. Mason, J.F. Wager, K.R. Poeppelmeier, J.D. Perkins, J.J. Berry, D.S. Ginley, A. Zunger, “Surface Origin of High Conductivities in Undoped In2O3 Thin Films”, Physical Review Letters, 108 (2012), 016802 | DOI

[48] G. Korotcenkov, M. Ivanov, I. Blinov, J.R. Stetter, “Kinetics of indium oxide-based thin film gas sensor response: The role of “redox” and adsorption/desorption processes in gas sensing effects”, Thin Solid Films, 515 (2007), 3987–3996 | DOI

[49] G. Korotcenkov, V. Brinzari, J.R. Stetter, I. Blinov, V. Blaja, “The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response”, Sensors and Actuators B-Chemical, 128 (2007), 51–63 | DOI