Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_3_a8, author = {Pavel S. Petrenko}, title = {Differential controllability of linear systems of differential-algebraic equations}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {320--329}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/} }
TY - JOUR AU - Pavel S. Petrenko TI - Differential controllability of linear systems of differential-algebraic equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 320 EP - 329 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/ LA - en ID - JSFU_2017_10_3_a8 ER -
%0 Journal Article %A Pavel S. Petrenko %T Differential controllability of linear systems of differential-algebraic equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 320-329 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/ %G en %F JSFU_2017_10_3_a8
Pavel S. Petrenko. Differential controllability of linear systems of differential-algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 320-329. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/
[1] K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, 1996 | MR | Zbl
[2] S.L. Campbell, E. Griepentrog, “Solvability of general differential algebraic equations”, SIAM J. Sci. Stat. Comp., 16 (1995), 257–270 | DOI | MR | Zbl
[3] I.V. Gaishun, Introduction to the theory of linear nonstationary systems, Publishing Natsional'naya Akademiya Nauk Belarusi, Institut Matematiki, 1999 (in Russian) | MR
[4] V. Mehrmann, T. Stykel, “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415
[5] E.L. Yip, R.F. Sincovec, “Solvability, controllability and observability of continuous descriptor systems”, IEEE Trans. Autom. Control, AC-26 (1981), 702–707 | DOI | MR | Zbl
[6] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | DOI | MR
[7] S.L. Campbell, N.K. Nichols, W.J. Terrell, “Duality, observability, and controllability for linear time-varying descriptor systems”, Circ, Syst. and Sign. Process., 10 (1991), 455–470 | DOI | MR | Zbl
[8] A.A. Shcheglova, P.S. Petrenko, “The R-observability and R-controllability of linear differential-algebraic systems”, Izv. Vyssh. Uchebn. Zaved., Mat., 2012, no. 3, 74–91 (in Russian) | MR | Zbl
[9] P.S. Petrenko, “Local R-controllability to zero of nonlinear algebraic-differential systems”, Izv. Irkutsk. Gos. Univ., Ser. Matemat., 4:4 (2011), 101–115 | Zbl
[10] A.A. Shcheglova, “Controllability of nonlinear algebraic differential systems”, Avtom. Telemekh., 2008, no. 10, 57–80 (in Russian) | MR | Zbl
[11] F.R. Gantmacher, The theory of matrices, Springer-Verlag, Berlin–New York, 1986 | MR
[12] A.A. Shcheglova, “The transformation of a linear algebraic-differential system to an equivalent form”, Proceeding of the IX International Chetaev Conference «Analytical Mechanics, Stability and Motion Control» (Irkutsk, June 2007), v. 5, 298–307 (in Russian) | MR