Differential controllability of linear systems of differential-algebraic equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 320-329
Voir la notice de l'article provenant de la source Math-Net.Ru
Linear controllable system of first order ordinary differential equations is considered. The system is unresolved with respect to the derivative of the unknown function and it is identically degenerate in the domain. An arbitrarily high unresolvability index is admitted. Differential controllability of the system is investigated under assumptions that ensure the existence of a global structural form that separates "algebraic" and "differential" subsystems.
Keywords:
differential-algebraic equations, differential controllability, full controllability.
@article{JSFU_2017_10_3_a8,
author = {Pavel S. Petrenko},
title = {Differential controllability of linear systems of differential-algebraic equations},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {320--329},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/}
}
TY - JOUR AU - Pavel S. Petrenko TI - Differential controllability of linear systems of differential-algebraic equations JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 320 EP - 329 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/ LA - en ID - JSFU_2017_10_3_a8 ER -
%0 Journal Article %A Pavel S. Petrenko %T Differential controllability of linear systems of differential-algebraic equations %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 320-329 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/ %G en %F JSFU_2017_10_3_a8
Pavel S. Petrenko. Differential controllability of linear systems of differential-algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 320-329. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/