Differential controllability of linear systems of differential-algebraic equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 320-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear controllable system of first order ordinary differential equations is considered. The system is unresolved with respect to the derivative of the unknown function and it is identically degenerate in the domain. An arbitrarily high unresolvability index is admitted. Differential controllability of the system is investigated under assumptions that ensure the existence of a global structural form that separates "algebraic" and "differential" subsystems.
Keywords: differential-algebraic equations, differential controllability, full controllability.
@article{JSFU_2017_10_3_a8,
     author = {Pavel S. Petrenko},
     title = {Differential controllability of linear systems of differential-algebraic equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {320--329},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/}
}
TY  - JOUR
AU  - Pavel S. Petrenko
TI  - Differential controllability of linear systems of differential-algebraic equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 320
EP  - 329
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/
LA  - en
ID  - JSFU_2017_10_3_a8
ER  - 
%0 Journal Article
%A Pavel S. Petrenko
%T Differential controllability of linear systems of differential-algebraic equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 320-329
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/
%G en
%F JSFU_2017_10_3_a8
Pavel S. Petrenko. Differential controllability of linear systems of differential-algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 320-329. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a8/

[1] K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, 1996 | MR | Zbl

[2] S.L. Campbell, E. Griepentrog, “Solvability of general differential algebraic equations”, SIAM J. Sci. Stat. Comp., 16 (1995), 257–270 | DOI | MR | Zbl

[3] I.V. Gaishun, Introduction to the theory of linear nonstationary systems, Publishing Natsional'naya Akademiya Nauk Belarusi, Institut Matematiki, 1999 (in Russian) | MR

[4] V. Mehrmann, T. Stykel, “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415

[5] E.L. Yip, R.F. Sincovec, “Solvability, controllability and observability of continuous descriptor systems”, IEEE Trans. Autom. Control, AC-26 (1981), 702–707 | DOI | MR | Zbl

[6] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, Berlin–Heidelberg–N.Y., 1989 | DOI | MR

[7] S.L. Campbell, N.K. Nichols, W.J. Terrell, “Duality, observability, and controllability for linear time-varying descriptor systems”, Circ, Syst. and Sign. Process., 10 (1991), 455–470 | DOI | MR | Zbl

[8] A.A. Shcheglova, P.S. Petrenko, “The R-observability and R-controllability of linear differential-algebraic systems”, Izv. Vyssh. Uchebn. Zaved., Mat., 2012, no. 3, 74–91 (in Russian) | MR | Zbl

[9] P.S. Petrenko, “Local R-controllability to zero of nonlinear algebraic-differential systems”, Izv. Irkutsk. Gos. Univ., Ser. Matemat., 4:4 (2011), 101–115 | Zbl

[10] A.A. Shcheglova, “Controllability of nonlinear algebraic differential systems”, Avtom. Telemekh., 2008, no. 10, 57–80 (in Russian) | MR | Zbl

[11] F.R. Gantmacher, The theory of matrices, Springer-Verlag, Berlin–New York, 1986 | MR

[12] A.A. Shcheglova, “The transformation of a linear algebraic-differential system to an equivalent form”, Proceeding of the IX International Chetaev Conference «Analytical Mechanics, Stability and Motion Control» (Irkutsk, June 2007), v. 5, 298–307 (in Russian) | MR