Algebraic sets with fully characteristic radicals
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 293-297
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a necessary and sufficient condition for an algebraic set in a group to have a fully characteristic radical. As a result, we see that if the radical of a system of equation $S$ over a group $G$ is fully characteristic, then there exists a class $\mathfrak{X}$ of subgroups of $G$ such that elements of $S$ are identities of $\mathfrak{X}$.
Keywords:
algebraic set, radical ideal, fully invariant congruence, fully characteristic subgroup.
Mots-clés : algebraic structures, equations
Mots-clés : algebraic structures, equations
@article{JSFU_2017_10_3_a3,
author = {Mohammad Shahryari},
title = {Algebraic sets with fully characteristic radicals},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {293--297},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/}
}
TY - JOUR AU - Mohammad Shahryari TI - Algebraic sets with fully characteristic radicals JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 293 EP - 297 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/ LA - en ID - JSFU_2017_10_3_a3 ER -
Mohammad Shahryari. Algebraic sets with fully characteristic radicals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 293-297. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/