Algebraic sets with fully characteristic radicals
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 293-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary and sufficient condition for an algebraic set in a group to have a fully characteristic radical. As a result, we see that if the radical of a system of equation $S$ over a group $G$ is fully characteristic, then there exists a class $\mathfrak{X}$ of subgroups of $G$ such that elements of $S$ are identities of $\mathfrak{X}$.
Keywords: algebraic set, radical ideal, fully invariant congruence, fully characteristic subgroup.
Mots-clés : algebraic structures, equations
@article{JSFU_2017_10_3_a3,
     author = {Mohammad Shahryari},
     title = {Algebraic sets with fully characteristic radicals},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {293--297},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/}
}
TY  - JOUR
AU  - Mohammad Shahryari
TI  - Algebraic sets with fully characteristic radicals
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 293
EP  - 297
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/
LA  - en
ID  - JSFU_2017_10_3_a3
ER  - 
%0 Journal Article
%A Mohammad Shahryari
%T Algebraic sets with fully characteristic radicals
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 293-297
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/
%G en
%F JSFU_2017_10_3_a3
Mohammad Shahryari. Algebraic sets with fully characteristic radicals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 293-297. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathematics, 1 (2008), 80–112 | MR

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., 185:3 (2012), 389–416 | DOI | MR | Zbl

[4] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl

[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains”, Algebra and Logic, 49:6 (2012), 483–508 | DOI | MR

[6] P. Modabberi, M. Shahryari, “Compactness conditions in universal algebraic geometry”, Algebra and Logic, 55:2 (2016), 146–172 | DOI | Zbl

[7] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, II. Logical Fundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[8] M. R. Vaughan-Lee, “Characteristic subgroups of free groups”, Bull. London Math. Soc., 2 (1970), 87–90 | DOI | MR | Zbl

[9] M. Amaglobeli, V. Remeslennikov, “$G$-identities and $G$-varieties”, Algebra and Logic, 39:3 (2000), 142–154 | DOI | MR