Mots-clés : algebraic structures, equations
@article{JSFU_2017_10_3_a3,
author = {Mohammad Shahryari},
title = {Algebraic sets with fully characteristic radicals},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {293--297},
year = {2017},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/}
}
Mohammad Shahryari. Algebraic sets with fully characteristic radicals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 293-297. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a3/
[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl
[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathematics, 1 (2008), 80–112 | MR
[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., 185:3 (2012), 389–416 | DOI | MR | Zbl
[4] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, III: Equationally Noetherian property and compactness”, Southeast Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl
[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains”, Algebra and Logic, 49:6 (2012), 483–508 | DOI | MR
[6] P. Modabberi, M. Shahryari, “Compactness conditions in universal algebraic geometry”, Algebra and Logic, 55:2 (2016), 146–172 | DOI | Zbl
[7] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, II. Logical Fundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR | Zbl
[8] M. R. Vaughan-Lee, “Characteristic subgroups of free groups”, Bull. London Math. Soc., 2 (1970), 87–90 | DOI | MR | Zbl
[9] M. Amaglobeli, V. Remeslennikov, “$G$-identities and $G$-varieties”, Algebra and Logic, 39:3 (2000), 142–154 | DOI | MR