Mots-clés : algebraic equations, convergence.
@article{JSFU_2017_10_3_a11,
author = {Artem V. Senashov},
title = {On convergence of {Mellin{\textendash}Barnes} integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {339--344},
year = {2017},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/}
}
TY - JOUR AU - Artem V. Senashov TI - On convergence of Mellin–Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 339 EP - 344 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/ LA - en ID - JSFU_2017_10_3_a11 ER -
%0 Journal Article %A Artem V. Senashov %T On convergence of Mellin–Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 339-344 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/ %G en %F JSFU_2017_10_3_a11
Artem V. Senashov. On convergence of Mellin–Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 339-344. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/
[1] H. Mellin, “Résolution de I'équation algébrique générale à l'aide de la fonction $\Gamma $”, S.C.R. Acad. Sci., 172 (1921), 658–661 | Zbl
[2] I. A. Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations”, Sbornik Mathematics, 198:4 (2007), 447–463 | DOI | MR | Zbl
[3] V. A. Stepanenko, “The solution of a system of n algebraic equations in $n$ unknowns by means of hypergeometric functions”, Vestnik Krasnoyar. Gosudarst. Univer., 1 (2003), 35–48 (in Russian)
[4] I. A. Antipova, “An Expression for the Superposition of General Algebraic Functions in Terms of Hypergeometric Series”, Siberian Mathematical Journal, 44:5 (2003), 757–764 | DOI | MR | Zbl
[5] V. R. Kulikov, “Conditions for convergence of the Mellin–Barnes integral for solution to system of algebraic equations”, J. Siberian Federal University. Mathematics and Physics, 7:3 (2014), 339–346
[6] T. M. Sadykov, A. K. Tsikh, Hypergeometric and algebraic functions of several variables, Nauka, M., 2014