On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 339-344
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Mellin–Barnes integral that corresponds to a monomial function of a solution to a system of $n$ algebraic equations in $n$ variables. For $n=3$ we prove that a known necessary condition for convergence for the Mellin–Barnes integral is also sufficient.
Keywords:
Mellin–Barnes integral
Mots-clés : algebraic equations, convergence.
Mots-clés : algebraic equations, convergence.
@article{JSFU_2017_10_3_a11,
author = {Artem V. Senashov},
title = {On convergence of {Mellin--Barnes} integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {339--344},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/}
}
TY - JOUR AU - Artem V. Senashov TI - On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 339 EP - 344 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/ LA - en ID - JSFU_2017_10_3_a11 ER -
%0 Journal Article %A Artem V. Senashov %T On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 339-344 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/ %G en %F JSFU_2017_10_3_a11
Artem V. Senashov. On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 339-344. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/