On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 339-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Mellin–Barnes integral that corresponds to a monomial function of a solution to a system of $n$ algebraic equations in $n$ variables. For $n=3$ we prove that a known necessary condition for convergence for the Mellin–Barnes integral is also sufficient.
Keywords: Mellin–Barnes integral
Mots-clés : algebraic equations, convergence.
@article{JSFU_2017_10_3_a11,
     author = {Artem V. Senashov},
     title = {On convergence of {Mellin--Barnes} integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {339--344},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/}
}
TY  - JOUR
AU  - Artem V. Senashov
TI  - On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 339
EP  - 344
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/
LA  - en
ID  - JSFU_2017_10_3_a11
ER  - 
%0 Journal Article
%A Artem V. Senashov
%T On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 339-344
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/
%G en
%F JSFU_2017_10_3_a11
Artem V. Senashov. On convergence of Mellin--Barnes integrals representing solutions of general algebraic systems of $3$ equations with $3$ variables. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 339-344. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a11/

[1] H. Mellin, “Résolution de I'équation algébrique générale à l'aide de la fonction $\Gamma $”, S.C.R. Acad. Sci., 172 (1921), 658–661 | Zbl

[2] I. A. Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations”, Sbornik Mathematics, 198:4 (2007), 447–463 | DOI | MR | Zbl

[3] V. A. Stepanenko, “The solution of a system of n algebraic equations in $n$ unknowns by means of hypergeometric functions”, Vestnik Krasnoyar. Gosudarst. Univer., 1 (2003), 35–48 (in Russian)

[4] I. A. Antipova, “An Expression for the Superposition of General Algebraic Functions in Terms of Hypergeometric Series”, Siberian Mathematical Journal, 44:5 (2003), 757–764 | DOI | MR | Zbl

[5] V. R. Kulikov, “Conditions for convergence of the Mellin–Barnes integral for solution to system of algebraic equations”, J. Siberian Federal University. Mathematics and Physics, 7:3 (2014), 339–346

[6] T. M. Sadykov, A. K. Tsikh, Hypergeometric and algebraic functions of several variables, Nauka, M., 2014