@article{JSFU_2017_10_3_a0,
author = {Konstantin S. Efimov and Aleksandr A. Makhnev},
title = {Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {271--280},
year = {2017},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a0/}
}
TY - JOUR AU - Konstantin S. Efimov AU - Aleksandr A. Makhnev TI - Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 271 EP - 280 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a0/ LA - en ID - JSFU_2017_10_3_a0 ER -
%0 Journal Article %A Konstantin S. Efimov %A Aleksandr A. Makhnev %T Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 271-280 %V 10 %N 3 %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a0/ %G en %F JSFU_2017_10_3_a0
Konstantin S. Efimov; Aleksandr A. Makhnev. Automorphisms of the $AT4(6,6,3)$-graph and its strongly-regular graphs. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 3, pp. 271-280. http://geodesic.mathdoc.fr/item/JSFU_2017_10_3_a0/
[1] A. Jurisic, J. Koolen, “Classification of the family $AT4(qs,q,q)$ of antipodal tight graphs”, J. Comb. Theory, 118:3 (2011), 842–852 | DOI | MR | Zbl
[2] A. E. Brouwer, W. H. Haemers, Spectra of Graphs, Springer, New York, 2012 | MR | Zbl
[3] P. J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, 1999 | MR | Zbl
[4] A. L. Gavrilyuk, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersetion array $\{56,45,1;1,9,56\}$”, Doklady Akademii Nauk, 432:5 (2010), 512–515 (in Russian) | MR
[5] M. Behbahani, C. Lam, “Strongly regular graphs with non-trivial automorphisms”, Discrete Math., 311:3 (2011), 132–144 | DOI | MR | Zbl
[6] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl