Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 199-205

Voir la notice de l'article provenant de la source Math-Net.Ru

The correctness of Cauchy problem for a polynomial difference operator is studied. An easily verifiable sufficient condition for correctness of a two-dimensional Cauchy problem for an operator with constant coefficients is proved.
Keywords: polynomial difference operator, Cauchy problem, correctness.
@article{JSFU_2017_10_2_a6,
     author = {Marina S. Apanovich and Evgeny K. Leinartas},
     title = {Correctness of a two-dimensional {Cauchy} problem for a polynomial difference operator with constant coefficients},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {199--205},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/}
}
TY  - JOUR
AU  - Marina S. Apanovich
AU  - Evgeny K. Leinartas
TI  - Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 199
EP  - 205
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/
LA  - en
ID  - JSFU_2017_10_2_a6
ER  - 
%0 Journal Article
%A Marina S. Apanovich
%A Evgeny K. Leinartas
%T Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 199-205
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/
%G en
%F JSFU_2017_10_2_a6
Marina S. Apanovich; Evgeny K. Leinartas. Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 199-205. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/