Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_2_a6, author = {Marina S. Apanovich and Evgeny K. Leinartas}, title = {Correctness of a two-dimensional {Cauchy} problem for a polynomial difference operator with constant coefficients}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {199--205}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/} }
TY - JOUR AU - Marina S. Apanovich AU - Evgeny K. Leinartas TI - Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 199 EP - 205 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/ LA - en ID - JSFU_2017_10_2_a6 ER -
%0 Journal Article %A Marina S. Apanovich %A Evgeny K. Leinartas %T Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 199-205 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/ %G en %F JSFU_2017_10_2_a6
Marina S. Apanovich; Evgeny K. Leinartas. Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 199-205. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/
[1] A. O. Gel'fond, The calculus of finite differences, KomKniga, M., 2006 (in Russian) | MR
[2] M. Bousquet-Melou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl
[3] E. K. Leinartas, “Multiple Laurent series and fundamental solutions of linear difference equations”, Sib. Math. J., 48:2 (2007), 335–340 | DOI | MR | Zbl
[4] A. A. Samarskii, Introduction to the theory of differential circuits, Nauka, M., 1971 (in Russian) | MR
[5] V. S. Ryaben'kii, On the stability of difference equations, Gos. izd. tekhniko-teoreticheskoy literatury, M., 1956 (in Russian) | MR
[6] M. S. Rogozina, “Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces”, Journal of Siberian Federal University. Mathematics Physics, 5:2 (2012), 256–263 (in Russian)
[7] R. Izerman, Digital Control Systems, Springer-Verlag, 1981 | MR
[8] A. K. Tsikh, “Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables”, Mathematics of the USSR-Sbornik, 74:2 (1993), 337–360 | DOI | MR | Zbl
[9] M. V. Fedoruk, Asymptotics: integrals and series, Nauka, M., 1987 (in Russian) | MR
[10] M. S. Rogozina, “Stability of multilayer inhomogeneous difference schemes and amoebas of algebraic hypersurfaces”, Vestnik SibGAU, 49:3 (2013), 95–99 (in Russian)
[11] E. K. Leinartas, “The stability of the Cauchy problem for the homogeneous difference operator and the amoeba of characteristic set”, Sib. Math. J., 52:5 (2011), 1087–1095 | DOI | MR | Zbl
[12] M. S. Rogozina, “On the solvability of the Cauchy problem for a polynomial difference operator”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 14:3 (2014), 83–94 (in Russian) | Zbl
[13] E. K. Leinartas, M. S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Sib. Math. J., 56:1 (2015), 92–100 | DOI | MR | Zbl
[14] M. S. Rogozina, “On the correctness of polynomial difference operators”, Journal of Siberian Federal University. Mathematics Physics, 8:4 (2012), 437–441 | DOI | MR
[15] L. Hörmander, An introduction to complex analysis in several variables, 3 Ed., North Holland, 1990 | MR | Zbl
[16] Yu. S. Volkov, V. L. Miroshnichenko, “Norm estimates for the inverses of matrices of monotone type and totally positive matrices”, Sib. Math. J., 50:6 (2009), 982–987 | DOI | MR | Zbl
[17] S. P. Sharyi, A course of computational methods, Novosibirsk Univ., Novosibirsk, 2012