Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 199-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

The correctness of Cauchy problem for a polynomial difference operator is studied. An easily verifiable sufficient condition for correctness of a two-dimensional Cauchy problem for an operator with constant coefficients is proved.
Keywords: polynomial difference operator, Cauchy problem, correctness.
@article{JSFU_2017_10_2_a6,
     author = {Marina S. Apanovich and Evgeny K. Leinartas},
     title = {Correctness of a two-dimensional {Cauchy} problem for a polynomial difference operator with constant coefficients},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {199--205},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/}
}
TY  - JOUR
AU  - Marina S. Apanovich
AU  - Evgeny K. Leinartas
TI  - Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 199
EP  - 205
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/
LA  - en
ID  - JSFU_2017_10_2_a6
ER  - 
%0 Journal Article
%A Marina S. Apanovich
%A Evgeny K. Leinartas
%T Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 199-205
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/
%G en
%F JSFU_2017_10_2_a6
Marina S. Apanovich; Evgeny K. Leinartas. Correctness of a two-dimensional Cauchy problem for a polynomial difference operator with constant coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 199-205. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a6/

[1] A. O. Gel'fond, The calculus of finite differences, KomKniga, M., 2006 (in Russian) | MR

[2] M. Bousquet-Melou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[3] E. K. Leinartas, “Multiple Laurent series and fundamental solutions of linear difference equations”, Sib. Math. J., 48:2 (2007), 335–340 | DOI | MR | Zbl

[4] A. A. Samarskii, Introduction to the theory of differential circuits, Nauka, M., 1971 (in Russian) | MR

[5] V. S. Ryaben'kii, On the stability of difference equations, Gos. izd. tekhniko-teoreticheskoy literatury, M., 1956 (in Russian) | MR

[6] M. S. Rogozina, “Stability of multilayer finite difference schemes and amoebas of algebraic hypersurfaces”, Journal of Siberian Federal University. Mathematics Physics, 5:2 (2012), 256–263 (in Russian)

[7] R. Izerman, Digital Control Systems, Springer-Verlag, 1981 | MR

[8] A. K. Tsikh, “Conditions for absolute convergence of the Taylor coefficient series of a meromorphic function of two variables”, Mathematics of the USSR-Sbornik, 74:2 (1993), 337–360 | DOI | MR | Zbl

[9] M. V. Fedoruk, Asymptotics: integrals and series, Nauka, M., 1987 (in Russian) | MR

[10] M. S. Rogozina, “Stability of multilayer inhomogeneous difference schemes and amoebas of algebraic hypersurfaces”, Vestnik SibGAU, 49:3 (2013), 95–99 (in Russian)

[11] E. K. Leinartas, “The stability of the Cauchy problem for the homogeneous difference operator and the amoeba of characteristic set”, Sib. Math. J., 52:5 (2011), 1087–1095 | DOI | MR | Zbl

[12] M. S. Rogozina, “On the solvability of the Cauchy problem for a polynomial difference operator”, Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 14:3 (2014), 83–94 (in Russian) | Zbl

[13] E. K. Leinartas, M. S. Rogozina, “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Sib. Math. J., 56:1 (2015), 92–100 | DOI | MR | Zbl

[14] M. S. Rogozina, “On the correctness of polynomial difference operators”, Journal of Siberian Federal University. Mathematics Physics, 8:4 (2012), 437–441 | DOI | MR

[15] L. Hörmander, An introduction to complex analysis in several variables, 3 Ed., North Holland, 1990 | MR | Zbl

[16] Yu. S. Volkov, V. L. Miroshnichenko, “Norm estimates for the inverses of matrices of monotone type and totally positive matrices”, Sib. Math. J., 50:6 (2009), 982–987 | DOI | MR | Zbl

[17] S. P. Sharyi, A course of computational methods, Novosibirsk Univ., Novosibirsk, 2012