Finite ion size effects on electrolyte transport in nanofiltration membranes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 186-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

The pressure-driven electrolyte transport through nanofiltration membrane pores with specified wall potential is investigated theoretically. The finite ion size effect is taken into account by introducing an additional term to electrochemical potential. The two-dimensional Navier–Stokes, Poisson, and modified Nernst–Planck equations are solved numerically in a high aspect ratio nanopore connecting two reservoirs with a larger diameter. The calculations are performed for potassium chloride aqueous solution. In the case of point-like ions, the non-physical rise of counter-ion concentration is observed near the pore wall at large applied voltages. When finite ion size is taken in account, the concentration of counter-ions decreases significantly and saturates to the maximum value. It leads to lower osmotic pressure jump and larger magnitude of potential in the pore. The stronger co-ion depletion observed for finite size ions results in the increase of salt rejection, membrane potential, and required pressure drop.
Keywords: conductive membranes, electrolyte transport, modified Nernst–Planck equation, finite ion size, numerical modelling.
Mots-clés : nanofiltration
@article{JSFU_2017_10_2_a5,
     author = {Ilya I. Ryzhkov and Andrey V. Minakov},
     title = {Finite ion size effects on electrolyte transport in nanofiltration membranes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {186--198},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/}
}
TY  - JOUR
AU  - Ilya I. Ryzhkov
AU  - Andrey V. Minakov
TI  - Finite ion size effects on electrolyte transport in nanofiltration membranes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2017
SP  - 186
EP  - 198
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/
LA  - en
ID  - JSFU_2017_10_2_a5
ER  - 
%0 Journal Article
%A Ilya I. Ryzhkov
%A Andrey V. Minakov
%T Finite ion size effects on electrolyte transport in nanofiltration membranes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2017
%P 186-198
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/
%G en
%F JSFU_2017_10_2_a5
Ilya I. Ryzhkov; Andrey V. Minakov. Finite ion size effects on electrolyte transport in nanofiltration membranes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 186-198. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/

[1] H. Strathmann, Introduction to membrane science, Wiley-VCH, 2011

[2] R. W. Baker, Membrane technology and applications, John Wiley Sons, 2004

[3] V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev, A. B. Yaroslavtsev, “Membranes and nanotechnologies”, Nanotechnologies in Russia, 3 (2008), 656–687 | DOI

[4] M. Nishizawa, V. P. Menon, C. R. Martin, “Metal nanotubule membranes with electrochemically switchable ion–transport selectivity”, Science, 268 (1995), 700–702 | DOI

[5] M. S. Kang, C. R. Martin, “Investigations of potential–dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method”, Langmuir, 17 (2001), 2753–2759 | DOI

[6] M. W. Verbrugge, P. N. Pintauro, “Transport models for ion–exchange membranes”, Modern Asp. Electrochem., 19 (1989), 1–67

[7] V. V. Nikonenko, A. B. Yaroslavtsev, G. Pourcelly, “Ion transfer in and through charged membranes: structure, properties, and theory”, Ionic interactions in natural and synthetic macromolecules, Chapter 9, John Wiley Sons, 2012

[8] T. Tsuru, S. Nakao, S. Kimura, “Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions”, J. Chem. Eng. Jpn., 24 (1991), 511–517 | DOI

[9] W. R. Bowen, H. Mukhtar, “Characterisation and prediction of separation performance of nanofiltration membranes”, J. Membr. Sci., 112 (1996), 263–274 | DOI

[10] S. Bhattacharjee, J. C. Hen, M. Elimelech, “Coupled model of concentration polarization and pore transport in crossflow nanofiltration”, AIChE J., 47 (2001), 2733–2745 | DOI

[11] S. Bandini, D. Vezzani, “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization”, Chem. Eng. Science, 58 (2003), 3303–3326 | DOI

[12] R. J. Gross, J. F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI

[13] G. B. Westermann–Clark, J. L. Anderson, “Experimental verification of the space–charge model for electrokinetics in charged microporous membranes”, J. Electrochem. Soc., 130 (1983), 839–847 | DOI

[14] X. L. Wang, T. Tsuru, S. I. Nakao, S. Kimura, “Electrolyte transport through nanofiltration membranes by the space–charge model and the comparison with Teorell–Meyer–Sievers model”, J. Membr. Sci., 103 (1995), 117–133 | DOI

[15] I. I. Ryzhkov, A. V. Minakov, “Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/charge density”, J. Membr. Sci., 520 (2016), 515–528 | DOI

[16] P. B. Peters, R. van Roij, M. Z. Bazant, P. M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI

[17] I. Borukhov, D. Andelman, H. Orland, “Steric effects in electrolytes: A modified Poisson–Boltzmann equation”, Phys. Rev. Lett., 79 (1997), 435–438 | DOI

[18] J. J. Bikerman, “Structure and capacity of the electrical double layer”, Philos. Mag., 33 (1942), 384–397 | DOI | Zbl

[19] M. S. Kilic, M. Z. Bazant, A. Ajdari, “Steric effects in the dynamics of electrolytes at large applied voltages. I. Double–layer charging”, Phys. Rev. E, 75 (2007), 021502 | DOI

[20] M. S. Kilic, M. Z. Bazant, A. Ajdari, “Steric effects in the dynamics of eletrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations”, Phys. Rev. E, 75 (2007), 021503 | DOI

[21] M. Z. Bazant, M. S. Kilic, B. D. Storey, A. Ajdari, “Towards an understanding of induced–charge electrokinetics at large applied voltages in concentrated solutions”, Adv. Colloid Interface Sci., 152 (2009), 48–88 | DOI

[22] J. Cervera, J. A. Manzanares, S. Mafé, “Ion size effects on the current efficiency of narrow charged pores”, J. Membr. Sci., 191 (2011), 179–187 | DOI

[23] J. Cervera, V. García–Morales, J. Pellicer, “Ion size effects on the electrokinetic flow in nanoporous membranes caused by concentration gradients”, J. Phys. Chem. B, 107 (2003), 8300–8309 | DOI

[24] H. Wang, A. Thiele, L. Pilon, “Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: A generalized modified Poisson–Nernst–Planck model”, J. Phys. Chem. C, 117 (2013), 18286–18297 | DOI

[25] B. Lu, Y. C. Zhou, “Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes II: Size effects on ionic distributions and diffusion–reaction rates”, Biophys. J., 100 (2011), 2475–2485 | DOI

[26] E. L. Cussler, Diffusion mass transfer in fluid systems, Cambridge University Press, 2007

[27] B. Lu, M. J. Holst, J. A. McCammon, Y. C. Zhou, “Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: Finite element solutions”, J. Comp. Phys., 229 (2010), 6979–6994 | DOI | MR | Zbl

[28] T. J. Chung, Computational fluid dynamics, Cambridge University Press, 2010 | MR | Zbl