Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_2_a5, author = {Ilya I. Ryzhkov and Andrey V. Minakov}, title = {Finite ion size effects on electrolyte transport in nanofiltration membranes}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {186--198}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/} }
TY - JOUR AU - Ilya I. Ryzhkov AU - Andrey V. Minakov TI - Finite ion size effects on electrolyte transport in nanofiltration membranes JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 186 EP - 198 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/ LA - en ID - JSFU_2017_10_2_a5 ER -
%0 Journal Article %A Ilya I. Ryzhkov %A Andrey V. Minakov %T Finite ion size effects on electrolyte transport in nanofiltration membranes %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 186-198 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/ %G en %F JSFU_2017_10_2_a5
Ilya I. Ryzhkov; Andrey V. Minakov. Finite ion size effects on electrolyte transport in nanofiltration membranes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 186-198. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a5/
[1] H. Strathmann, Introduction to membrane science, Wiley-VCH, 2011
[2] R. W. Baker, Membrane technology and applications, John Wiley Sons, 2004
[3] V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, S. S. Ivanchev, A. B. Yaroslavtsev, “Membranes and nanotechnologies”, Nanotechnologies in Russia, 3 (2008), 656–687 | DOI
[4] M. Nishizawa, V. P. Menon, C. R. Martin, “Metal nanotubule membranes with electrochemically switchable ion–transport selectivity”, Science, 268 (1995), 700–702 | DOI
[5] M. S. Kang, C. R. Martin, “Investigations of potential–dependent fluxes of ionic permeates in gold nanotubule membranes prepared via the template method”, Langmuir, 17 (2001), 2753–2759 | DOI
[6] M. W. Verbrugge, P. N. Pintauro, “Transport models for ion–exchange membranes”, Modern Asp. Electrochem., 19 (1989), 1–67
[7] V. V. Nikonenko, A. B. Yaroslavtsev, G. Pourcelly, “Ion transfer in and through charged membranes: structure, properties, and theory”, Ionic interactions in natural and synthetic macromolecules, Chapter 9, John Wiley Sons, 2012
[8] T. Tsuru, S. Nakao, S. Kimura, “Calculation of ion rejection by extended Nernst–Planck equation with charged reverse osmosis membranes for single and mixed electrolyte solutions”, J. Chem. Eng. Jpn., 24 (1991), 511–517 | DOI
[9] W. R. Bowen, H. Mukhtar, “Characterisation and prediction of separation performance of nanofiltration membranes”, J. Membr. Sci., 112 (1996), 263–274 | DOI
[10] S. Bhattacharjee, J. C. Hen, M. Elimelech, “Coupled model of concentration polarization and pore transport in crossflow nanofiltration”, AIChE J., 47 (2001), 2733–2745 | DOI
[11] S. Bandini, D. Vezzani, “Nanofiltration modeling: the role of dielectric exclusion in membrane characterization”, Chem. Eng. Science, 58 (2003), 3303–3326 | DOI
[12] R. J. Gross, J. F. Osterle, “Membrane transport characteristics of ultrafine capillaries”, J. Chem. Phys., 49 (1968), 228–234 | DOI
[13] G. B. Westermann–Clark, J. L. Anderson, “Experimental verification of the space–charge model for electrokinetics in charged microporous membranes”, J. Electrochem. Soc., 130 (1983), 839–847 | DOI
[14] X. L. Wang, T. Tsuru, S. I. Nakao, S. Kimura, “Electrolyte transport through nanofiltration membranes by the space–charge model and the comparison with Teorell–Meyer–Sievers model”, J. Membr. Sci., 103 (1995), 117–133 | DOI
[15] I. I. Ryzhkov, A. V. Minakov, “Theoretical study of electrolyte transport in nanofiltration membranes with constant surface potential/charge density”, J. Membr. Sci., 520 (2016), 515–528 | DOI
[16] P. B. Peters, R. van Roij, M. Z. Bazant, P. M. Biesheuvel, “Analysis of electrolyte transport through charged nanopores”, Phys. Rev. E, 93 (2016), 053108 | DOI
[17] I. Borukhov, D. Andelman, H. Orland, “Steric effects in electrolytes: A modified Poisson–Boltzmann equation”, Phys. Rev. Lett., 79 (1997), 435–438 | DOI
[18] J. J. Bikerman, “Structure and capacity of the electrical double layer”, Philos. Mag., 33 (1942), 384–397 | DOI | Zbl
[19] M. S. Kilic, M. Z. Bazant, A. Ajdari, “Steric effects in the dynamics of electrolytes at large applied voltages. I. Double–layer charging”, Phys. Rev. E, 75 (2007), 021502 | DOI
[20] M. S. Kilic, M. Z. Bazant, A. Ajdari, “Steric effects in the dynamics of eletrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations”, Phys. Rev. E, 75 (2007), 021503 | DOI
[21] M. Z. Bazant, M. S. Kilic, B. D. Storey, A. Ajdari, “Towards an understanding of induced–charge electrokinetics at large applied voltages in concentrated solutions”, Adv. Colloid Interface Sci., 152 (2009), 48–88 | DOI
[22] J. Cervera, J. A. Manzanares, S. Mafé, “Ion size effects on the current efficiency of narrow charged pores”, J. Membr. Sci., 191 (2011), 179–187 | DOI
[23] J. Cervera, V. García–Morales, J. Pellicer, “Ion size effects on the electrokinetic flow in nanoporous membranes caused by concentration gradients”, J. Phys. Chem. B, 107 (2003), 8300–8309 | DOI
[24] H. Wang, A. Thiele, L. Pilon, “Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: A generalized modified Poisson–Nernst–Planck model”, J. Phys. Chem. C, 117 (2013), 18286–18297 | DOI
[25] B. Lu, Y. C. Zhou, “Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes II: Size effects on ionic distributions and diffusion–reaction rates”, Biophys. J., 100 (2011), 2475–2485 | DOI
[26] E. L. Cussler, Diffusion mass transfer in fluid systems, Cambridge University Press, 2007
[27] B. Lu, M. J. Holst, J. A. McCammon, Y. C. Zhou, “Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: Finite element solutions”, J. Comp. Phys., 229 (2010), 6979–6994 | DOI | MR | Zbl
[28] T. J. Chung, Computational fluid dynamics, Cambridge University Press, 2010 | MR | Zbl