Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2017_10_2_a16, author = {Mikhael A. Vasyutin and Nikolay D. Kuzmichev and Dmitri A. Shilkin}, title = {Fractal boundaries of vortex pinning clusters in copper-oxide superconductors in magnetic field}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {261--265}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a16/} }
TY - JOUR AU - Mikhael A. Vasyutin AU - Nikolay D. Kuzmichev AU - Dmitri A. Shilkin TI - Fractal boundaries of vortex pinning clusters in copper-oxide superconductors in magnetic field JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2017 SP - 261 EP - 265 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a16/ LA - en ID - JSFU_2017_10_2_a16 ER -
%0 Journal Article %A Mikhael A. Vasyutin %A Nikolay D. Kuzmichev %A Dmitri A. Shilkin %T Fractal boundaries of vortex pinning clusters in copper-oxide superconductors in magnetic field %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2017 %P 261-265 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a16/ %G en %F JSFU_2017_10_2_a16
Mikhael A. Vasyutin; Nikolay D. Kuzmichev; Dmitri A. Shilkin. Fractal boundaries of vortex pinning clusters in copper-oxide superconductors in magnetic field. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 10 (2017) no. 2, pp. 261-265. http://geodesic.mathdoc.fr/item/JSFU_2017_10_2_a16/
[1] M. Prester, “Experimental evidence of a fractal dissipative regime in high-T$_{c}$ superconductors”, Phys. Rev. B, 60 (1999), 3100–3103 | DOI
[2] D. A. Balaev, I. L. Belozerova, D. M. Gokhfeld, L. V. Kashkina, Yu. I. Kuzmin, C. R. Michel, M. I. Petrov, S. I. Popkov, K. A. Shaikhutdinov, “Current-voltage characteristics of a foamed Bi$_{1.8}$Pb$_{0.3}$Sr$_{2}$Ca$_{2}$Cu$_{3}$O$_{x}$ high-temperature superconductor with fractal cluster structure”, Phys. Solid State, 48 (2006), 207–212 | DOI
[3] R. Surdeanu, R. J. Wijngaarden, B. Dam, J. Rector, R. Griessen, C. Rossel, Z. F. Ren, J. H. Wang, “Crossover between fractal and nonfractal flux penetration in high-temperature superconducting thin films”, Phys. Rev. B, 58 (1998), 12467–12477 | DOI
[4] M. Baziljevich, E. Baruch-El, T. H. Johansen, Y. Yeshurun, “Dendritic instability in YBa$_{2}$Cu$_{3}$O$_{7-x}$ films triggered by transient magnetic fields”, Appl. Phys. Lett., 105 (2014), 012602 | DOI
[5] J. I. Vestgarden, P. Mikheenko, Y. M. Galperin, T. H. Johansen, “Nonlocal electrodynamics of normal and superconducting films”, New J. Phys., 15 (2013), 093001 | DOI
[6] A. V. Milovanov, J. J. Rasmussen, “Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds”, Phys. Rev. B, 66 (2002), 134505 | DOI
[7] Yu. I. Kuzmin, “Magnetic-flux creep at the initial stage of resistive transition in superconductors with fractal clusters of normal phase”, Tech. Phys. Lett., 40 (2014), 769–772 | DOI
[8] M. A. Vasyutin, “Fractal dimension of structural inhomogeneities in granular YBCO superconductor in magnetic field”, Tech. Phys. Lett., 37 (2011), 743–745 | DOI
[9] S. Kang, A. Goyal, J. Li, A. A. Gapud, P. M. Martin, L. Heatherly, J. R. Thompson, D. K. Christen, F. A. List, M. Paranthaman, D. F. Lee, “High-performance high-Tc superconducting wires”, Science, 311 (2006), 1911–1914 | DOI
[10] Yu. I. Kuzmin, I. V. Pleshakov, S. V. Razumov, “The statistical distribution of magnetic critical currents determined by HTSC film morfology”, Phys. Solid State, 41 (1999), 1594–1597 | DOI
[11] S. H. Wee, A. Goyal, E. D. Specht, C. Cantoni, Y. L. Zuev, V. Selvamanickam, Sy Cook, “Enhanced flux pinning and critical current density via incorporation of self-assembled rare-earth barium tantalate nanocolumns within YBa$_{2}$Cu$_{3}$O$_{7-\delta}$ films”, Phys. Rev. B, 81 (2010), 140503 | DOI
[12] Yu. I. Kuzmin, “Resistive state of superconducting structures with fractal clusters of a normal phase”, Phys. Solid State, 43 (2001), 1199–1206 | DOI
[13] Yu. I. Kuzmin, “Peculiarities of the resistive transition in fractal superconducting structures”, Tech. Phys. Lett., 29 (2003), 414–417 | DOI
[14] Yu. I. Kuzmin, “Depinning at the initial stage of the resistive transition in superconductors with a fractal claster structure”, Tech. Phys. Lett., 30 (2004), 457–460 | DOI
[15] Yu. I. Kuzmin, “Vortex glass state in superconductors with fractal clusters of normal phase”, Tech. Phys. Lett., 36 (2010), 400–403 | DOI
[16] M. A. Vasyutin, N. D. Kuz'michev, “Nonlinearity of the current-voltage characteristics of HTS YBa$_{2}$Cu$_{3}$O$_{7-x}$, defined by a modulation technique”, Tech. Phys. Lett., 18 (1992), 764–766
[17] N. D. Kuz'michev, “Magnetic field penetration into the weak-link system of the YBa$_{2}$Cu$_{3}$O$_{7-x}$ granular superconductor”, Phys. Solid State, 43 (2001), 2012–2017 | DOI
[18] L. M. Zelenyi, A. V. Milovanov, “Fractal topology and strange kinetics from percolation theory to problems in cosmic electrodynamics”, Phys. Usp., 47 (2004), 749–788 | DOI